A Numerical Investigation into the Primary Resonant Dynamics of Magneto-Electro-Thermo-Elastic Plates

Abstract

The geometrically nonlinear forced vibration response of magneto-electro-thermo-elastic (METE) rectangular plates is analyzed herein using a numerical approach. The shear deformation effect is taken into account based on the first-order shear deformation plate theory. The geometrical nonlinearity is also considered using the von Kármán hypothesis. Based upon a variational approach, the energy functional of problem is obtained and represented in matrix form. Then, the variational differential quadrature technique is utilized to directly discretize that functional. For the solution in the time domain, the time periodic discretization method is employed. Finally, the pseudo arc-length continuation technique is used to find the frequency-response curves of METE plates under various boundary conditions. The influences of electric voltage, magnetic potential and temperature difference on the primary resonant dynamics of METE plates are investigated.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Alibeigi B, Tadi Beni Y (2018) On the size-dependent magneto/electromechanical buckling of nanobeams. Eur Phys J Plus 133:398

    Article  Google Scholar 

  2. Alibeigi B, Tadi Beni Y, Mehralian F (2018) On the thermal buckling of magneto-electro-elastic piezoelectric nanobeams. Eur Phys J Plus 133:133

    Article  Google Scholar 

  3. Ansari R, Gholami R (2016) Nonlocal free vibration in the pre-and post-buckled states of magneto-electro-thermo elastic rectangular nanoplates with various edge conditions. Smart Mater Struct 25:095033

    Article  Google Scholar 

  4. Ansari R, Gholami R (2017) Size-dependent buckling and postbuckling analyses of first-order shear deformable magneto-electro-thermo elastic nanoplates based on the nonlocal elasticity theory. Int J Struct Stab Dyn 17:1750014

    MathSciNet  Article  Google Scholar 

  5. Ansari R, Torabi J (2016) Nonlocal vibration analysis of circular double-layered graphene sheets resting on an elastic foundation subjected to thermal loading. Acta Mech Sin 32:841–853

    MathSciNet  Article  Google Scholar 

  6. Ansari R, Hasrati E, Gholami R, Sadeghi F (2015a) Nonlinear analysis of forced vibration of nonlocal third-order shear deformable beam model of magneto–electro–thermo elastic nanobeams. Compos Part B 83:226–241

    Article  Google Scholar 

  7. Ansari R, Gholami R, Rouhi H (2015b) Size-dependent nonlinear forced vibration analysis of magneto-electro-thermo-elastic Timoshenko nanobeams based upon the nonlocal elasticity theory. Compos Struct 126:216–226

    Article  Google Scholar 

  8. Ansari R, Gholami R, Rouhi H (2019) Geometrically nonlinear free vibration analysis of shear deformable magneto-electro-elastic plates considering thermal effects based on a novel variational approach. Thin-Walled Struct 135:12–20

    Article  Google Scholar 

  9. Asemi SR, Farajipour A (2014) Thermo-electro-mechanical vibration of coupled piezoelectric-nanoplate systems under non-uniform voltage distribution embedded in Pasternak elastic medium. Curr Appl Phys 14:814–832

    Article  Google Scholar 

  10. Benveniste Y (1995) Magnetoelectric effect in fibrous composites with piezoelectric and piezomagnetic phase. Phys Rev B 51:16424–16427

    Article  Google Scholar 

  11. Daga A, Ganesan N, Shankar K (2009a) Transient dynamic response of cantilever magneto-electro-elastic beam using finite elements. Int J Comput Meth Eng Sci Mech 10:173–185

    Article  Google Scholar 

  12. Daga A, Ganesan N, Shankar K (2009b) Harmonic response of three-phase magneto-electro-elastic beam under mechanical, electrical and magnetic environment. J Intell Mater Syst Struct 20:1203–1220

    Article  Google Scholar 

  13. Dehkordi SF, Tadi Beni Y (2017) Electro-mechanical free vibration of single-walled piezoelectric/flexoelectric nano cones using consistent couple stress theory. Int J Mech Sci 128–129:125–139

    Article  Google Scholar 

  14. Ebrahimi F, Barati MR (2017) Buckling analysis of smart size-dependent higher order magneto-electro-thermo-elastic functionally graded nanosize beams. J Mech 33:23–33

    Article  Google Scholar 

  15. Ebrahimi N, Tadi Beni Y (2016) Electro-mechanical vibration of nanoshells using consistent size-dependent piezoelectric theory. Steel Compos Struct 22:1301–1336

    Article  Google Scholar 

  16. Faghih Shojaei M, Ansari R (2017) Variational differential quadrature: a technique to simplify numerical analysis of structures. Appl Math Model 49:705–738

    MathSciNet  Article  Google Scholar 

  17. Faghih Shojaei M, Ansari R, Mohammadi V, Rouhi H (2014) Nonlinear forced vibration analysis of postbuckled beams. Arch Appl Mech 84:421–440

    Article  Google Scholar 

  18. Gholami R, Ansari R, Gholami Y (2017) Nonlinear resonant dynamics of geometrically imperfect higher-order shear deformable functionally graded carbon-nanotube reinforced composite beams. Compos Struct 174:45–58

    Article  Google Scholar 

  19. Huang DJ, Ding HJ, Chen WQ (2007) Analytical solution for functionally graded magneto-electro-elastic plane beams. Int J Eng Sci 45:467–485

    Article  Google Scholar 

  20. Jandaghian AA, Rahmani O (2016) Free vibration analysis of magneto-electro-thermo-elastic nanobeams resting on a Pasternak foundation. Smart Mater Struct 25:035023

    Article  Google Scholar 

  21. Jiangong Y, Qiujuan M (2010) Wave characteristics in magneto-electro-elastic functionally graded spherical curved plates. Mech Adv Mater Struct 17:287–301

    Article  Google Scholar 

  22. Jiangyi C, Hualing C, Ernian P (2006) Free vibration of functionally graded, magneto-electro-elastic, and multilayered plates. Acta Mech Solida Sin 19:160–166

    Article  Google Scholar 

  23. Ke LL, Wang YS (2014) Free vibration of size-dependent magneto-electro-elastic nanobeams based on the nonlocal theory. Physica E 63:52–61

    Article  Google Scholar 

  24. Ke LL, Wang YS, Yang J, Kitipornchai S (2014) Free vibration of size-dependent magneto-electro-elastic nanoplates based on the nonlocal theory. Acta Mech Sin 30:516–525

    MathSciNet  Article  Google Scholar 

  25. Keller HB (1977) Numerical solution of bifurcation and nonlinear eigenvalue problems, in Applications of bifurcation theory (Proc. Advanced Sem. Univ. Wisconsin, Madison Wis. 1976). Academic Press, New York, pp 359–384

    Google Scholar 

  26. Kheibari F, Tadi Beni Y (2017) Size dependent electro-mechanical vibration of single-walled piezoelectric nanotubes using thin shell model. Mater Des 114:572–583

    Article  Google Scholar 

  27. Kiani A, Sheikhkhoshkar M, Jamalpoor A, Khanzadi M (2018) Free vibration problem of embedded magneto-electro-thermo-elastic nanoplate made of functionally graded materials via nonlocal third-order shear deformation theory. J Intell Mater Syst Struct 29:741–763

    Article  Google Scholar 

  28. Lang Z, Xuewu L (2013) Buckling and vibration analysis of functionally graded magneto-electro-thermo-elastic circular cylindrical shells. Appl Math Model 37:2279–2292

    MathSciNet  Article  Google Scholar 

  29. Li YS, Cai ZY, Shi SY (2014) Buckling and free vibration of magnetoelectroelastic nanoplate based on nonlocal theory. Compos Struct 111:522–529

    Article  Google Scholar 

  30. Nan CW, Bichurin M, Dong S, Viehland D, Srinivasan G (2008) Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J Appl Phys 103:031101

    Article  Google Scholar 

  31. Omidian R, Tadi Beni Y, Mehralian F (2017) Analysis of size-dependent smart flexoelectric nanobeams. Eur Phys J Plus 132:481

    Article  Google Scholar 

  32. Priya S, Islam R, Dong S, Viehland D (2007) Recent advancements in magnetoelectric particulate and laminate composites. J Electroceram 19:149–166

    Article  Google Scholar 

  33. Shojaeefard MH, Mahinzare M, Safarpour H, Saeidi Googarchin H, Ghadiri M (2018) Free vibration of an ultra-fast-rotating-induced cylindrical nano-shell resting on a Winkler foundation under thermo-electro-magneto-elastic condition. Appl Math Model 61:255–279

    MathSciNet  Article  Google Scholar 

  34. Tsai YH, Wu CP, Syu YS (2008) Three-dimensional analysis of doubly curved functionally graded magneto-electro-elastic shells. Eur J Mech A Solids 27:79–105

    MathSciNet  Article  Google Scholar 

  35. Vinyas M, Kattimani SC (2018) Influence of coupled material properties of BaTiO3 and CoFe2O4 on the static behavior of thermo-mechanically loaded magneto-electro-elastic beam. Mater Today Proc 5:7410–7419

    Article  Google Scholar 

  36. Wang R, Han Q, Pan E (2010) An analytical solution for a multilayered magneto-electro-elastic circular plate under simply supported lateral boundary conditions. Smart Mater Struct 19(6):065025

    Article  Google Scholar 

  37. Wang Y, Xu R, Ding H (2011) Axisymmetric bending of functionally graded circular magneto-electro-elastic plates. Eur J Mech A Solids 30:999–1011

    MathSciNet  Article  Google Scholar 

  38. Wu CP, Tsai YH (2007) Static behavior of functionally graded magneto-electro-elastic shells under electric displacement and magnetic flux. Int J Eng Sci 45:744–769

    Article  Google Scholar 

  39. Zhai J, Xing Z, Dong S, Li J, Viehland D (2008) Magnetoelectric laminate composites: an overview. J Am Ceram Soc 91:351–358

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to H. Rouhi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gholami, R., Ansari, R. & Rouhi, H. A Numerical Investigation into the Primary Resonant Dynamics of Magneto-Electro-Thermo-Elastic Plates. Iran J Sci Technol Trans Mech Eng 44, 571–583 (2020). https://doi.org/10.1007/s40997-019-00293-0

Download citation

Keywords

  • Magneto-electro-thermo-elastic plate
  • Nonlinear forced vibration
  • Variational differential quadrature method