Effect of Threaded Pin Tool for Friction Stir Welding of AA6061-T6 at Varying Traverse Speeds: Torque and Force Analysis

Abstract

Friction stir welding (FSW) of 6-mm-thick AA 6061-T6 plates for taper threaded tool were studied in this investigation in terms of torque and different forces. A plain taper tool in addition to threaded tool is also incorporated in the study to analyze the effectiveness of threads. Welding was conducted at a constant rotational speed of 1100 RPM and varying traverse speeds between 45 and 135 mm/min. The distribution of torque, Z-force and X-force generated during the FSW process discloses a substantial knowledge about the weld formation. The torque and forces increase with the increase in traverse speed for both the tools where higher values were attained by taper threaded tool. The macrostructure reveals a sudden increase in thickness of shoulder induced region and nugget area, followed by a gradual decrease for both of the tools with traverse speed. Comparatively larger shoulder induced region and weld nugget are obtained for taper threaded tool. The maximum values of these entities were attained at 75 mm/min for taper threaded tool, and a difference of 0.13 mm and 7.52 mm2, respectively, was obtained with taper tool. Finer grains with an average diameter of 5.82 µm are obtained for taper threaded tool and 8.68 µm for taper tool. Maximum tensile strength was obtained for taper threaded tool with a joint efficiency of 70.96% and 60.32% for taper tool. A mixed mode of failure is observed at a higher traverse speed for taper tool, whereas all welds for taper threaded tool exhibit ductile fracture.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. Ahmadnia M, Seidanloo A, Teimouri R, Rostamiyan Y, Titrashi KG (2015) Determining influence of ultrasonic-assisted friction stir welding parameters on mechanical and tribological properties of {AA}6061 joints. Int J Adv Manuf Technol 78(9–12):2009–2024. https://doi.org/10.1007/s00170-015-6784-0

    Article  Google Scholar 

  2. Attallah MM, Salem HG (2005) Friction stir welding parameters: a tool for controlling abnormal grain growth during subsequent heat treatment. Mater Sci Eng A 391(1–2):51–59. https://doi.org/10.1016/j.msea.2004.08.059

    Article  Google Scholar 

  3. Banik A, Saha Roy B, Deb Barma J, Saha SC (2018) An experimental investigation of torque and force generation for varying tool tilt angles and their effects on microstructure and mechanical properties: friction stir welding of AA 6061-T6. J Manuf Process 31:395–404. https://doi.org/10.1016/j.jmapro.2017.11.030

    Article  Google Scholar 

  4. Colegrove PA, Shercliff HR (2005) 3-Dimensional CFD modelling of flow round a threaded friction stir welding tool profile. J Mater Process Technol 169(2):320–327. https://doi.org/10.1016/j.jmatprotec.2005.03.015

    Article  Google Scholar 

  5. Elangovan K, Balasubramanian V (2008) Influences of tool pin profile and welding speed on the formation of friction stir processing zone in {AA}2219 aluminium alloy. J Mater Process Technol 200(1–3):163–175. https://doi.org/10.1016/j.jmatprotec.2007.09.019

    Article  Google Scholar 

  6. Elangovan K, Balasubramanian V, Valliappan M (2008) Influences of tool pin profile and axial force on the formation of friction stir processing zone in AA6061 aluminium alloy. Int J Adv Manuf Technol 38(3–4):285–295. https://doi.org/10.1007/s00170-007-1100-2

    Article  Google Scholar 

  7. Hall EO (1954) Variation of hardness of metals with grain size. Nature 173(4411):948–949. https://doi.org/10.1038/173948b0

    Article  Google Scholar 

  8. He J, Ling Z, Li H (2016) Effect of tool rotational speed on residual stress, microstructure, and tensile properties of friction stir welded 6061-T6 aluminum alloy thick plate. Int J Adv Manuf Technol 84(9):1953–1961. https://doi.org/10.1007/s00170-015-7859-7

    Article  Google Scholar 

  9. Hou JC, Liu HJ, Zhao YQ (2014) Influences of rotation speed on microstructures and mechanical properties of 6061-T6 aluminum alloy joints fabricated by self-reacting friction stir welding tool. Int J Adv Manuf Technol 73(5–8):1073–1079. https://doi.org/10.1007/s00170-014-5857-9

    Article  Google Scholar 

  10. Kadian AK, Biswas P (2017) Effect of tool pin profile on the material flow characteristics of {AA}6061. J Manuf Process 26:382–392. https://doi.org/10.1016/j.jmapro.2017.03.005

    Article  Google Scholar 

  11. Kumar S (2016) Ultrasonic assisted friction stir processing of 6063 aluminum alloy. Arch Civ Mech Eng 16(3):473–484. https://doi.org/10.1016/j.acme.2016.03.002

    Article  Google Scholar 

  12. Liu HJ, Hou JC, Guo H (2013) Effect of welding speed on microstructure and mechanical properties of self-reacting friction stir welded 6061-T6 aluminum alloy. Mater Des 50:872–878. https://doi.org/10.1016/j.matdes.2013.03.105

    Article  Google Scholar 

  13. Lorrain O, Favier V, Zahrouni H, Lawrjaniec D (2010) Understanding the material flow path of friction stir welding process using unthreaded tools. J Mater Process Technol 210(4):603–609. https://doi.org/10.1016/j.jmatprotec.2009.11.005

    Article  Google Scholar 

  14. Mehdi H, Mishra RS (2018) Analysis of material flow and heat transfer in reverse dual rotation friction stir welding: a review. Int J Steel Struct 1:13. https://doi.org/10.1007/s13296-018-0131-x

    Article  Google Scholar 

  15. Mironov S, Inagaki K, Sato YS, Kokawa H (2014) Effect of welding temperature on microstructure of friction-stir welded aluminum alloy 1050. Metall Mater Trans A 46(2):783–790. https://doi.org/10.1007/s11661-014-2651-0

    Article  Google Scholar 

  16. Mishra RS, Ma ZY (2005) Friction stir welding and processing. Mater Sci Eng R Rep 50(1–2):1–78. https://doi.org/10.1016/j.mser.2005.07.001

    Article  Google Scholar 

  17. Rajakumar S, Muralidharan C, Balasubramanian V (2011) Predicting tensile strength, hardness and corrosion rate of friction stir welded {AA}6061-T6 aluminium alloy joints. Mater Des 32(5):2878–2890. https://doi.org/10.1016/j.matdes.2010.12.025

    Article  Google Scholar 

  18. Reza-E-Rabby M, Reynolds AP (2014) Effect of tool pin thread forms on friction stir weldability of different aluminum alloys. Procedia Eng 90:637–642. https://doi.org/10.1016/j.proeng.2014.11.784

    Article  Google Scholar 

  19. Rose AR, Manisekar K, Balasubramanian V (2011) Effect of axial force on microstructure and tensile properties of friction stir welded {AZ}61A magnesium alloy. Trans Nonferr Met Soc China 21(5):974–984. https://doi.org/10.1016/s1003-6326(11)60809-1

    Article  Google Scholar 

  20. Santochi M, Dini G (1998) Sensor technology in assembly systems. CIRP Ann 47(2):503–524. https://doi.org/10.1016/S0007-8506(07)63239-9

    Article  Google Scholar 

  21. Shi L, Wu CS, Liu HJ (2015) The effect of the welding parameters and tool size on the thermal process and tool torque in reverse dual-rotation friction stir welding. Int J Mach Tools Manuf 91:1–11. https://doi.org/10.1016/j.ijmachtools.2015.01.004

    Article  Google Scholar 

  22. Sun Z, Wu CS (2018) A numerical model of pin thread effect on material flow and heat generation in shear layer during friction stir welding. J Manuf Process 36:10–21. https://doi.org/10.1016/j.jmapro.2018.09.021

    Article  Google Scholar 

  23. Sun Z, Yang X, Li D, Cui L (2016) The local strength and toughness for stationary shoulder friction stir weld on {AA}6061-T6 alloy. Mater Charact 111:114–121. https://doi.org/10.1016/j.matchar.2015.11.020

    Article  Google Scholar 

  24. Teti R, Jemielniak K, O’Donnell G, Dornfeld D (2010) Advanced monitoring of machining operations. CIRP Ann 59(2):717–739. https://doi.org/10.1016/j.cirp.2010.05.010

    Article  Google Scholar 

  25. Thomas WM, Nicholas ED, Needham JC, Murch MG, Templesmith P, Dawes CJ (1991) GB Patent application no. 9125978.8. International Patent Application No. PCT/GB92/02203

  26. Trimble D, Monaghan J, O’Donnell GE (2012) Force generation during friction stir welding of AA2024-T3. CIRP Ann 61(1):9–12. https://doi.org/10.1016/j.cirp.2012.03.024

    Article  Google Scholar 

  27. Trimble D, O’Donnell GE, Monaghan J (2015) Characterisation of tool shape and rotational speed for increased speed during friction stir welding of {AA}2024-T3. J Manuf Process 17:141–150. https://doi.org/10.1016/j.jmapro.2014.08.007

    Article  Google Scholar 

  28. Yang Y, Kalya P, Landers RG, Krishnamurthy K (2008) Automatic gap detection in friction stir butt welding operations. Int J Mach Tools Manuf 48(10):1161–1169. https://doi.org/10.1016/j.ijmachtools.2008.01.007

    Article  Google Scholar 

  29. Zhao Y, Lin S, Wu L, Qu F (2005) The influence of pin geometry on bonding and mechanical properties in friction stir weld 2014 Al alloy. Mater Lett 59(23):2948–2952

    Article  Google Scholar 

  30. Zhou L, Luo LY, Zhang TP, He WX, Huang YX, Feng JC (2017) Effect of rotation speed on microstructure and mechanical properties of refill friction stir spot welded 6061-T6 aluminum alloy. Int J Adv Manuf Technol 92(9–12):3425–3433. https://doi.org/10.1007/s00170-017-0359-1

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Abhijit Banik.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Banik, A., Deb Barma, J. & Saha, S.C. Effect of Threaded Pin Tool for Friction Stir Welding of AA6061-T6 at Varying Traverse Speeds: Torque and Force Analysis. Iran J Sci Technol Trans Mech Eng 44, 749–764 (2020). https://doi.org/10.1007/s40997-019-00289-w

Download citation

Keywords

  • Friction stir welding
  • Tool design
  • Torque
  • Z-force
  • X-force
  • Microstructure