Design, Prototyping and Performance Evaluation of a Bio-inspired Walking Microrobot

Abstract

This paper presents the development of a small and lightweight differential hexapedal microrobot, inspired by cockroach locomotion mechanism. Detailed design, prototyping and performance evaluation are reported in this paper. The manufacturing process of the microrobot uses Smart Composite Microstructure method by employing origami-inspired techniques. Each leg of the robot has 2-DoF in Cartesian space and uses cockroach mechanism in its configuration with lightweight moving parts. This microrobot deploys an on-board power source and control system architecture which offers the advantage of self-stabilizing in a horizontal plane, head orientation control and stair climbing capability that have not previously been reported in the literature. A prototype of the microrobot has been constructed and was evaluated at different terrains.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

References

  1. Baisch A (2013) Design, manufacturing, and locomotion studies of ambulatory micro-robots. Dissertation, Harvard University

  2. Baisch A, Wood R (2011) Design and fabrication of the Harvard Ambulatory Micro-Robot. Robot Res 70:715–730. https://doi.org/10.1007/978-3-642-19457-3_42

    Article  Google Scholar 

  3. Baisch A, Wood R (2013) Pop-up assembly of a quadrupedal ambulatory microrobot. In: IEEE/RSJ international conference on intelligent robots and systems (IROS). https://doi.org/10.1109/iros.2013.6696550

  4. Baisch A, Sreetharan P, Wood R (2010) Biologically-inspired locomotion of a 2 g hexapod robot. In: IEEE/RSJ international conference on intelligent robots and systems

  5. Baisch A, Heimlich C, Karpelson M, Wood R (2011) HAMR3: an autonomous 1.7 g ambulatory robot. In: IEEE/RSJ international conference on intelligent robots and systems. https://doi.org/10.1109/iros.2011.6095063

  6. Baisch A, Ozcan O, Goldberg B, Ithier D, Wood R (2014) High speed locomotion for a quadrupedal microrobot. Int J Robot Res. https://doi.org/10.1177/0278364914521473

    Article  Google Scholar 

  7. Birkmeyer P, Peterson K, Fearing R (2009) DASH: a dynamic 16 g hexapedal robot. In: IEEE/RSJ international conference on intelligent robots and systems. https://doi.org/10.1109/iros.2009.535456

  8. Bruhwiler R, Goldberg B, Doshi N, Ozcan O, Jafferis N, Karpelson M, Wood R (2015) Feedback control of a legged microrobot with on-board sensing. In: IEEE/RSJ international conference on intelligent robots and systems (IROS). https://doi.org/10.1109/iros.2015.7354190

  9. Full R, Tu M (1991) Mechanics of a rapid running insect: two-, four- and six-legged locomotion. J Exp Biol 156:215–231

    Google Scholar 

  10. Haldane D, Peterson K, Bermudez F, Fearing R (2013) Animal-inspired design and aerodynamic stabilization of a hexapedal millirobot. In: IEEE international conference on robotics and automation (ICRA). https://doi.org/10.1109/icra.2013.6631034

  11. Hoover A, Fearing R (2008) Fast scale prototyping for folded millirobots. In: IEEE international conference on robotics and automation. https://doi.org/10.1109/robot.2008.4543317

  12. Hoover A, Steltz E, Fearing R (2008) RoACH: An autonomous 2.4 g crawling hexapod robot. In: IEEE/RSJ international conference on intelligent robots and systems, pp 26–33. https://doi.org/10.1109/iros.2008.4651149

  13. Hoover A, Burden S, Fu X, Sastry S, Fearing S (2010) Bio-inspired design and dynamic manoeuvrability of a minimally actuated six-legged robot. In: 3rd IEEE RAS and EMBS international conference on biomedical robotics and biomechatronics (BioRob), pp 869–876. https://doi.org/10.1109/biorob.2010.5626034

  14. Jindrich D, Full R (2002) Dynamic stabilization of rapid hexapedal locomotion. J Exp Biol 205:2803–2823

    Google Scholar 

  15. Kim S, Clark J, Cutkosky M (2006) isprawl: design and tuning for high-speed autonomous open-loop running. Int J Robot Res 25(9):903–912. https://doi.org/10.1177/0278364906069150

    Article  Google Scholar 

  16. Lee J, Fearing R (2015) Anisotropic collapsible leg spines for increased millirobot traction. In: IEEE international conference on robotics and automation (ICRA). https://doi.org/10.1109/icra.2015.7139829

  17. Li C, Pullin A, Haldane D, Lam H, Fearing R, Full R (2015) Terradynamically streamlined shapes in animals and robots enhance traversability through densely cluttered terrain. Bioinspir Biomim. https://doi.org/10.1088/1748-3190/10/4/046003

    Article  Google Scholar 

  18. Mongeau J, McRae B, Jusufi A, Birkmeyer P, Hoover A, Fearing R, Full R (2012) Rapid inversion: running animals and robots swing like a pendulum under ledges. PLoS ONE. https://doi.org/10.1371/journal.pone.0038003

    Article  Google Scholar 

  19. Ozcan O, Baisch A, Wood R (2013) Design and feedback control of a biologically-inspired miniature quadruped. In: IEEE/RSJ international conference on intelligent robots and systems (IROS). https://doi.org/10.1109/iros.2013.6696538

  20. Revzen S, Burden S, Moore T, Mongeau J, Full R (2013) Instantaneous kinematic phase reflects neuromechanical response to lateral perturbations of running cockroaches. Biol Cybern 12:12. https://doi.org/10.1007/s00422-012-0545-z

    Article  Google Scholar 

  21. Saranli U, Buehler M, Koditschek D (2001) Rhex: a simple and highly mobile hexapod robot. Int J Robot Res 20(7):616–631. https://doi.org/10.1177/02783640122067570

    Article  Google Scholar 

  22. Seitz B, Goldberg B, Doshi N, Ozcan O, Christensen D, Hawkes E, Cutkosky M, Wood R (2014) Bio-inspired mechanisms for inclined locomotion in a legged insect-scale robot. In: International conference on robotics and biomimetics. https://doi.org/10.1109/robio.2014.7090428

  23. Siegwart R, Nourbakhsh I (2004) Introduction to autonomous mobile robots. MIT press, Cambridge

    Google Scholar 

  24. Steltz E (2008) Redesign of the micromechanical flying insect in a power density context. Dissertation, EECS Department, University of California, Berkeley

  25. Wood R, Avadhanula S, Sahai R, Steltz E, Fearing R (2008) Microrobot design using fiber reinforced composites. J Mech Des. https://doi.org/10.1115/1.2885509

    Article  Google Scholar 

  26. Yumaryanto A, An J, Lee S (2006) A cockroach-inspired hexapod robot actuated by lipca. In: IEEE conference on robotics, automation and mechatronics, pp 1–6. https://doi.org/10.1109/ramech.2006.252682

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Farshid Najafi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Amirhosseini, H., Najafi, F. Design, Prototyping and Performance Evaluation of a Bio-inspired Walking Microrobot. Iran J Sci Technol Trans Mech Eng 44, 799–811 (2020). https://doi.org/10.1007/s40997-019-00281-4

Download citation

Keywords

  • Microrobot
  • SCM method
  • Origami
  • Self-stabilizing