Hydraulics and Blading of Centrifugal Pump Impellers: A Systematic Review and Application

  • Qihua ZhangEmail author
  • Li Cao
  • Zhaoxu Yan
  • Weidong Zhang
Review Paper


To develop a solid hydraulic designing model, a systematic survey of the existing hydraulic designing models and the blading layout techniques for centrifugal pump impellers is performed. Firstly, a hydraulic designing technique based on blade loading model is put forth using the Euler pump and turbine equation and the Bernoulli equation under the rotating reference frame. Secondly, a brief introduction on the conformal mapping method is presented. Thirdly, a blading layout technique is performed by the transformation between polar and rectangular plane coordinates. At last, the hydraulic designing model and the blading layout techniques are integrated into a CAD based designing system. The system is proved flexible and robust during the practical designing process.


Centrifugal pumps Hydraulic designing Rotating reference frame Blade loading model Conformal mapping 

List of symbols


Blade inlet width (mm)


Blade outlet width (mm)


Impeller suction eye diameter (mm)


Impeller wheel diameter (mm)


Gravitational acceleration (m s−2)


Stagnant enthalpy at position r1 (J)


Pump head (m)


Impeller rotating speed (r min−1)


Pump flow rate (m3 s−1); heat gained from outer circumstance (J)


The impeller rotating speed at radius r1 (m s−1)


Entering flow tangent velocity at radius r1 (m s−1)


Relative velocity on the pressure side (m s−1)


Relative velocity on the suction side (m s−1)


Blade inlet angle (°)


Blade outlet angle (°)


Angular velocity of impeller (rad s−1)


Fluid density (Kg m−3)



The authors are grateful for the support by the National Natural Science Foundation of China (No. 51309118), the Natural Science Foundation of Jiangsu Province (No. BK20130527) and the Six Talent Peaks Project of Jiangsu Province (No. 2015-ZBZZ-016).


  1. Anderson HH (1994) Centrifugal pumps and allied machinery. Elsevier, Amsterdam, pp 1–486CrossRefGoogle Scholar
  2. Aref’ev NN (2014) Method of analyzing and plotting the impeller blade of a centrifugal pump. Power Technol Eng 48(4):284–287. CrossRefGoogle Scholar
  3. Arnold J, Nijhuis GJ (2005) Selection design and operation of rotodynamic pumps. The Nijhuis Pompen, Netherlands, pp 1–274Google Scholar
  4. Aungier RH (2000) Centrifugal compressors: a strategy for aerodynamic design and analysis. ASME Press, New York, pp 1–315Google Scholar
  5. Bachus L, Custodio A (2003) Know and understand centrifugal pumps. Elsevier Science, Oxford, pp 1–264CrossRefGoogle Scholar
  6. Balje OE (1981) Turbomachines—a guide to design, selection, and theory. Wiley, Toronto, pp 1–513Google Scholar
  7. Brennen CE (1994) Hydrodynamics of pumps. Oxford University Press, Oxford, pp 1–316Google Scholar
  8. Chen NX (2010) Aerothermodynamics of turbomachinery: analysis and design. Wiley, Singapore, pp 1–448CrossRefGoogle Scholar
  9. Cumpsty NA (1989) Compressor aerodynamics. Longman, New York, pp 1–509Google Scholar
  10. Dufour JW, Nelson WE (1993) Centrifugal pump sourcebook. McGraw-Hill Inc., New York, pp 1–258Google Scholar
  11. Eck B (1973) Fans; design and operation of centrifugal, axial-flow, and cross-flow fans. Pergamon Press, Oxford, pp 1–616Google Scholar
  12. Elder R, Tourlidakis A, Yates M (2003) Advances of CFD in fluid machinery design. Professional Engineering, Bury St. Edmunds, pp 1–233Google Scholar
  13. Ferguson TB (1963) The centrifugal compressor stage. Butterworths, London, pp 1–152Google Scholar
  14. Girdhar P, Moniz O (2005) Practical centrifugal pumps: design, operation and maintenance. Elsevier, Amsterdam, pp 1–250CrossRefGoogle Scholar
  15. Goto A (2016) Historical perspective on fluid machinery flow optimization in an industry. Int. J. Fluid Mach Syst 9(1):75–84. CrossRefGoogle Scholar
  16. Goto A, Nohmi M, Sakurai T, Sogawa Y (2002) Hydrodynamic design system for pumps based on 3-D CAD, CFD, and inverse design method. J Fluids Eng 124(2):329–335. CrossRefGoogle Scholar
  17. Gülich JF (2008) Centrifugal pumps. Springer, Berlin, pp 1–956Google Scholar
  18. Hans S (1992) Affordable quasi three-dimensional inverse design method for pump impellers. In: Proceedings of the 9th international pump user symposium, pp 97–110Google Scholar
  19. Japikse D, Marscher WD, Furst RB (1997) Centrifugal pump design and performance. Concepts ETI, Wilder, pp 1–644Google Scholar
  20. Karassik IJ, McGuire T (1998) Centrifugal pumps. Chapman & Hall, London, pp 1–989Google Scholar
  21. Kim J-H, Li H-C, Kim J-H et al (2015a) Design techniques to improve the performance of a centrifugal pump using CFD. J Mech Sci Technol 29(1):215–225. CrossRefGoogle Scholar
  22. Kim S, Lee K-Y, Kim J-H et al (2015b) High performance hydraulic design techniques of mixed-flow pump impeller and diffuser. J Mech Sci Technol 29(1):227–240. CrossRefGoogle Scholar
  23. Kruyt NP, Westra RW (2014) On the inverse problem of blade design for centrifugal pumps and fans. IOP Publ Inverse Probl 30(6):065003-1-22. MathSciNetzbMATHGoogle Scholar
  24. Lakshminarayana B (1995) Fluid dynamics and heat transfer of turbomachinery. Wiley, New York, pp 1–809CrossRefGoogle Scholar
  25. Li W-G (2011) Inverse design of impeller blade of centrifugal pump with a singularity method. Jordan J Mech Ind Eng 5(2):119–128. CrossRefGoogle Scholar
  26. Li W-G (2013) Effects of flow rate and viscosity on slip factor of centrifugal pump handling viscous oils. Int. J. Rotating Mach 2013:1–12. Google Scholar
  27. Lobanoff VS, Ross RR (1992) Centrifugal pumps: design and application. Gulf Publishing Co., Huston, pp 1–374Google Scholar
  28. Miyauchi S, Zhu B, Luo X, Piao B, Matsumoto H, Sano M, Kassai N (2012) Optimization and inverse design of pump impeller. IOP Conf Ser Earth Environ Sci 15:032032. CrossRefGoogle Scholar
  29. Mohamad M, Ahmad N (2009) Experimental investigation of slip factors in centrifugal pumps. Exp Therm Fluid Sci 33(5):938–945. CrossRefGoogle Scholar
  30. Nelik L (1999) Centrifugal and rotary pumps: fundamentals with applications. The CRC Press, Washington, D.C., pp 1–137CrossRefGoogle Scholar
  31. Neumann B (1991) The interaction between geometry and performance of a centrifugal pump. MEP, London, pp 1–311Google Scholar
  32. Pfleiderer C (1961) Die Kreiselpumpen fuer Fluessigkeiten und Gase: Wasserpumpen, Ventilatoren, Turbogeblaese, Turbokompressoren. Springer, Berlin, pp 1–622CrossRefGoogle Scholar
  33. Pumps Sulzer (2010) Centrifugal pump handbook. Elsevier Butterworth Heinemann, Amsterdam, pp 1–239CrossRefGoogle Scholar
  34. Round GF (2004) Incompressible flow turbomachines: design, selection, applications, and theroy. Elsevier Butterworth Heinemann, Amsterdam, pp 1–341CrossRefGoogle Scholar
  35. Srinivasan KM (2008) Rotodynamic pumps (centrifugal and axial). New Delhi, New Age International (p) Ltd, pp 1–536Google Scholar
  36. Stanitz JD (1951) Approximate design method for high-solidity blade elements in compressors and turbines. NACA-TN-2408, pp 1–76Google Scholar
  37. Stepanoff AJ (1957) Centrifugal and axial flow pumps: theory, design, and application. Chapman & Hall, London, pp 1–462Google Scholar
  38. Su M, Zhang YX, Zhang JY, Hou HC (2016) Quasi-three dimensional hydraulic design and performance calculation of high specific speed mixed-flow pump. IOP Conf Ser Mater Sci Eng. Google Scholar
  39. Tan L, Cao S, Wang Y, Zhu B (2012) Direct and inverse iterative design method for centrifugal pump impellers. Proc Inst Mech Eng Part A J Power Energy 226(6):764–775. CrossRefGoogle Scholar
  40. Teodor M (2012) Impeller design using CAD techniques and conformal mapping method. In: Papantonis D (ed) Centrifugal pumps. InTech, Winchester, pp 33–62Google Scholar
  41. Turton RK (2005) Rotodynamic pump design. Cambridge University Press, New Delhi, pp 1–212Google Scholar
  42. Tuzson J (2000) Centrifugal pump design. Wiley, Chichester, pp 1–298Google Scholar
  43. Vavra MH (1960) Aero-thermodynamics and flow in turbomachines. Wiley, London, pp 1–609Google Scholar
  44. Whitfield A, Baines NC (1990) Design of radial turbomachines. Longman, Harlow, pp 1–397Google Scholar
  45. Wiesner FJ (1967) A review of slip factors for centrifugal impellers. J Eng Power 89(4):558–566. Google Scholar
  46. Wilson DG (1983) The design of high-efficiency turbomachinery and gas turbines. The MIT Press, Cambridge, pp 1–496Google Scholar
  47. Wu CH (1952) A general theory of three-dimensional flow in subsonic and supersonic turbomachines of axial-, radial-, and mixed-flow types. NACA-TN-2604, pp 1–93Google Scholar
  48. Yedidiah S (1996) Centrifugal pump user’s guidebook: problems and solutions. Chapman & Hall, New York, pp 1–387CrossRefGoogle Scholar
  49. Zhang QH, Xu Y, Shi WD, Lu WG (2012) Research and development on the hydraulic design system of the guide vanes of multistage centrifugal pumps. IOP Conf Ser Earth Environ Sci 15:032030. CrossRefGoogle Scholar
  50. Zhang Q, Shi W, Xu Y, Gao X, Wang C, Lu W, Ma D (2013a) A new proposed return guide vane for compact multistage centrifugal pumps. Int J Rotating Mach 2013:1–12. CrossRefGoogle Scholar
  51. Zhang Q-H, Xu Y, Xu Y-H, Shi W-D, Lu W-G, Liu W (2013b) Study on key technologies of energy-saving and environment-protective pumps. Therm Sci 17(5):1556–1559. CrossRefGoogle Scholar

Copyright information

© Shiraz University 2018

Authors and Affiliations

  • Qihua Zhang
    • 1
    • 2
    Email author
  • Li Cao
    • 1
  • Zhaoxu Yan
    • 1
  • Weidong Zhang
    • 1
  1. 1.National Research Center of PumpsJiangsu UniversityZhenjiangPeople’s Republic of China
  2. 2.Department of Mechanical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations