Skip to main content
Log in

A Variational Formulation to Find Finite Element Bending, Buckling and Vibration Equations of Nonlocal Timoshenko Beams

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Mechanical Engineering Aims and scope Submit manuscript

Abstract

A variational approach is developed to obtain bending, buckling and vibration finite element equations of nonlocal Timoshenko beams in this study. The reason for using the finite element method in this research is to investigate the behavior of nano-beams with complex geometry, material property and different boundary conditions. Weak forms of governing equations are derived, and the nonlocal differential elasticity theory is used to find the finite element formulation of nonlocal Timoshenko beams. In deriving the weak formulations, it is seen that it is impossible to construct the quadratic functional form due to non-symmetric bilinear property. Using the developed concepts and formulations, the bending and buckling of nonlocal Timoshenko beams with four classical boundary conditions are analyzed and the obtained results are compared with those reported in the literature. In order to show the capabilities of the proposed formulation in comparison with exact methods, the simply supported stepped nonlocal Timoshenko beam is selected and bending and buckling analyses are performed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Challamel N, Wang CM (2008) The small length scale effect for a non-local cantilever beam: a paradox solved. Nanotechnology 19:345703

    Article  Google Scholar 

  • Chen Y, Lee JD, Eskandarian A (2004) Atomistic viewpoint of the applicability of micro-continuum theories. Int J Solids Struct 41:2085

    Article  MATH  Google Scholar 

  • Dinckal C (2016) Free vibration analysis of carbon nanotubes by using finite element method. Iran J Sci Technol Trans Mech Eng 40(1):43–55

    Article  Google Scholar 

  • Ebrahimi F, Barati MR (2016) Nonlocal thermal buckling analysis of embedded magneto-electro-thermo-elastic nonhomogeneous nanoplates. Iran J Sci Technol Trans Mech Eng 40(4):243–264

    Article  Google Scholar 

  • Eringen AC (1972) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. Int J Eng Sci 10:1–16

    Article  Google Scholar 

  • Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54:4703–4710

    Article  Google Scholar 

  • Eringen AC, Suhubi ES (1964) Nonlinear theory of simple micro-elastic solids-I. Int J Eng Sci 2:189–203

    Article  MathSciNet  MATH  Google Scholar 

  • Farrokhabadi A, Tavakolian F (2017) Size-dependent dynamic analysis of rectangular nanoplates in the presence of electrostatic, Casimir and thermal forces. Appl Math Model 50:604–620

    Article  MathSciNet  Google Scholar 

  • Ghannadpour SAM, Mohammadi B (2010) Buckling analysis of micro- and nano-rods/tubes based on nonlocal Timoshenko beam theory using Chebyshev polynomials. Adv Mater Res 123–125:619–622

    Article  Google Scholar 

  • Ghannadpour SAM, Mohammadi B (2011) Vibration of nonlocal euler beams using Chebyshev polynomials. Key Eng Mater 471:1016–1021

    Article  Google Scholar 

  • Ghannadpour SAM, Mohammadi B, Fazilati J (2013) Bending, buckling and vibration problems of nonlocal Euler beams using Ritz method. Compos Struct 96:584–589

    Article  Google Scholar 

  • Hu Y, Liew KM, Wang Q, He XQ, Yakobson BI (2008) Nonlocal shell model for flexural wave propagation in double-walled carbon nanotubes. J Mech Phys Solids 56:3475

    Article  MATH  Google Scholar 

  • Koiter WT (1964) Couple-stresses in the theory of elasticity. In: Proceedings of the Koninkliske Ned- erlandse Akademie van Wetenschappen (B), vol 67, pp 17–44

  • Peddieson J, Buchanan GR, McNitt RP (2003) Application of nonlocal continuum models to nanotechnology. Int J Eng Sci 41:305–312

    Article  Google Scholar 

  • Phadikar JK, Pradhan SC (2010) Variational formulation and finite element analysis for nonlocal elastic nanobeams and nanoplates. Comput Mater Sci 49:492–499

    Article  Google Scholar 

  • Pisano AA, Sofi A, Fuschi P (2009a) Nonlocal integral elasticity: 2D finite element based solutions. Int J Solids Struct 46:3836–3849

    Article  MATH  Google Scholar 

  • Pisano AA, Sofi A, Fuschi P (2009b) Finite element solutions for nonhomogeneous nonlocal elastic problems. Mech Res Commun 36:755–761

    Article  MATH  Google Scholar 

  • Polizzotto C (2001) Nonlocal elasticity and related variational principles. Int J Solids Struct 38:7359–7380

    Article  MathSciNet  MATH  Google Scholar 

  • Tavakolian F, Farrokhabadi A (2017) Size-dependent dynamic instability of double-clamped nanobeams under dispersion forces in the presence of thermal stress effects. Microsyst Technol 23(8):3685–3699

    Article  Google Scholar 

  • Tavakolian F, Farrokhabadi A, Mirzaei M (2017) Pull-in instability of double clamped microbeams under dispersion forces in the presence of thermal and residual stress effects using nonlocal elasticity theory. Microsyst Technol 23(4):839–848

    Article  Google Scholar 

  • Toupin RA (1962) Elastic materials with couple-stresses. Arch Ration Mech Anal 11:385–414

    Article  MathSciNet  MATH  Google Scholar 

  • Wang Q (2005) Wave propagation in carbon nanotubes via nonlocal continuum mechanics. J Appl Phys 98:124301

    Article  Google Scholar 

  • Wang Q, Wang CM (2007) The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes. Nanotechnology 18:075702

    Article  Google Scholar 

  • Wang CM, Zhang YY, Ramesh SS, Kitipornchai S (2006) Buckling analysis of micro- and nano-rods/tubes based on nonlocal Timoshenko beam theory. J Phys D Appl Phys 39:3904–3909

    Article  Google Scholar 

  • Wang CM, Zhang YY, He XQ (2007) Vibration of nonlocal Timoshenko beams. Nanotechnology 18:105401

    Article  Google Scholar 

  • Wang CM, Kitipornchai S, Lim CW, Eisenberger M (2008) Beam bending solutions based on nonlocal Timoshenko beam theory. J Eng Mech ASCE 134:475–481

    Article  Google Scholar 

  • Yang F, Chong ACM, Lam DCC, Tong P (2002) Couple stress based strain gradient theory for elasticity. Int J Solids Struct 39:2731–2743

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. M. Ghannadpour.

Appendix: Nonlocal Timoshenko Beam element matrices

Appendix: Nonlocal Timoshenko Beam element matrices

The element matrices for nonlocal Timoshenko beam are presented as

$$\begin{aligned} \left\{ U \right\} & = \left\{ {\begin{array}{*{20}c} {w_{1} } & {w_{2} } & {w_{3} } & {w_{4} } & {\phi_{1} } & {\phi_{2} } & {\phi_{3} } & {\phi_{4} } \\ \end{array} } \right\}^{T} \\ \left[ K \right] & = \frac{{K_{s} GA}}{1680l}\left[ {\begin{array}{*{20}c} {42\left[ {C_{1} } \right]} & {21l\left[ {C_{2} } \right]} \\ {21l\left[ {C_{2} } \right]^{T} } & {l^{2} \left[ {C_{3} } \right]} \\ \end{array} } \right] + \frac{EI}{40l}\left[ {\begin{array}{*{20}c} 0 & 0 \\ 0 & {\left[ {C_{1} } \right]} \\ \end{array} } \right] \\ \left[ M \right] & = \frac{\rho l}{1680}\left[ {\begin{array}{*{20}c} {A\left[ {C_{3} } \right]} & 0 \\ 0 & {I\left[ {C_{3} } \right]} \\ \end{array} } \right] + \frac{{\eta^{2} \rho }}{80l}\left[ {\begin{array}{*{20}c} 0 & 0 \\ {Al\left[ {C_{2} } \right]} & {2I\left[ {C_{1} } \right]} \\ \end{array} } \right] \\ \left[ B \right] & = \frac{{\bar{P}}}{40l}\left[ {\begin{array}{*{20}c} {\left[ {C_{1} } \right]} & 0 \\ 0 & 0 \\ \end{array} } \right] + \frac{9}{8}\frac{{\eta^{2} \bar{P}}}{{l^{2} }}\left[ {\begin{array}{*{20}c} 0 & 0 \\ {\left[ {C_{4} } \right]} & 0 \\ \end{array} } \right] \\ \left\{ Q \right\} & = \frac{{q_{0} l}}{8}\left\{ {\begin{array}{*{20}c} 1 \\ 3 \\ 3 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array} } \right\} + q_{0} \eta^{2} \left\{ {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ 0 \\ { - 1} \\ 0 \\ 0 \\ 1 \\ \end{array} } \right\};\quad \left\{ F \right\} = \left\{ {\begin{array}{*{20}c} { - \left. V \right|_{{\bar{x} = 0}} } \\ 0 \\ 0 \\ {\left. V \right|_{{\bar{x} = l}} } \\ { - \left. M \right|_{{\bar{x} = 0}} } \\ 0 \\ 0 \\ {\left. M \right|_{{\bar{x} = l}} } \\ \end{array} } \right\} \\ \end{aligned}$$

where \(\left[ {C_{1} } \right]\), \(\left[ {C_{2} } \right]\), \(\left[ {C_{3} } \right]\) and \(\left[ {C_{4} } \right]\) are defined as

$$\begin{aligned} \left[ {C_{1} } \right] & = \left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {148} & { - 189} \\ { - 189} & {432} \\ \end{array} } & {\begin{array}{*{20}c} {54} & { - 13} \\ { - 297} & {54} \\ \end{array} } \\ {\begin{array}{*{20}c} {54} & { - 297} \\ { - 13} & {54} \\ \end{array} } & {\begin{array}{*{20}c} {432} & { - 189} \\ { - 189} & {148} \\ \end{array} } \\ \end{array} } \right] \\ \left[ {C_{2} } \right] & = \left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} { - 40} & { - 57} \\ {57} & 0 \\ \end{array} } & {\begin{array}{*{20}c} {24} & { - 7} \\ { - 81} & {24} \\ \end{array} } \\ {\begin{array}{*{20}c} { - 24} & {81} \\ 7 & { - 24} \\ \end{array} } & {\begin{array}{*{20}c} 0 & { - 57} \\ {57} & {40} \\ \end{array} } \\ \end{array} } \right] \\ \left[ {C_{3} } \right] & = \left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {128} & {99} \\ {99} & {648} \\ \end{array} } & {\begin{array}{*{20}c} { - 36} & {19} \\ { - 81} & { - 36} \\ \end{array} } \\ {\begin{array}{*{20}c} { - 36} & { - 81} \\ {19} & { - 36} \\ \end{array} } & {\begin{array}{*{20}c} {648} & {99} \\ {99} & {128} \\ \end{array} } \\ \end{array} } \right] \\ \left[ {C_{4} } \right] & = \left[ {\begin{array}{*{20}c} {13} & { - 31} & {23} & { - 5} \\ { - 9} & {27} & { - 27} & 9 \\ { - 9} & {27} & { - 27} & 9 \\ 5 & { - 23} & {31} & { - 13} \\ \end{array} } \right] \\ \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghannadpour, S.A.M. A Variational Formulation to Find Finite Element Bending, Buckling and Vibration Equations of Nonlocal Timoshenko Beams. Iran J Sci Technol Trans Mech Eng 43 (Suppl 1), 493–502 (2019). https://doi.org/10.1007/s40997-018-0172-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40997-018-0172-y

Keywords

Navigation