Skip to main content

Advertisement

Log in

Modeling and Analyzing of Energy Harvesting from Trapezoidal Piezoelectric Beams

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Mechanical Engineering Aims and scope Submit manuscript

Abstract

In this paper, output power and voltage from piezoelectric materials for trapezoidal sandwich beams, considering proof mass on free end of the beam with base excitation, are formulated. The proposed analytic formulation has a general form and can be applied to rectangular and triangular beams. Using this formulation, geometrical dimensions of a trapezoidal beam with volume less than a cubic centimeter are optimized by implementing the genetic algorithm. This optimized geometry will be able to produce an electrical power of 1.3 mW at the frequency of 50 Hz and electrical resistance of 30 kΩ. Also, the beam is modeled with finite element method to compare resultant output voltage and power with analytical outcomes. An acceptable accuracy in this comparison is observed, so proposed analytic model seems to be an appropriate tool in preliminary design and evaluation of piezoelectric bender energy harvesters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Amirtharajah R, Chandrakasan AP (1998) Self-powered signal processing using vibration-based power generation. IEEE J Solid State Circuits 33(5):687–695

    Article  Google Scholar 

  • Anton SR, Sodano HA (2007) A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater Struct 16(3):R1

    Article  Google Scholar 

  • Beeby SP, Tudor MJ, White NM (2006) Energy harvesting vibration sources for micro systems applications. Meas Sci Technol 17:175–195

    Article  Google Scholar 

  • Ben Ayed S et al (2014) Design and performance of variable-shaped piezoelectric energy harvesters. J Intell Mater Syst Struct 25(2):174–186

    Article  MathSciNet  Google Scholar 

  • Benasciutti D, Moro L, Zelenika S, Brusa E (2010) Vibration energy scavenging via piezoelectric bimorphs of optimized shapes. Micro Syst Technol 16:657–668

    Article  Google Scholar 

  • Elhami M, Glynne-Jones P, White NM, Hill M, Beeby S, James E, Brown AD, Ross JN (2001) Design and fabrication of a new vibration-based electromechanical power generator. Sensors Actuators A Phys 92:335–342

    Article  Google Scholar 

  • Elvin N, Erturk A (2013) Advances in energy harvesting methods. Springer, New York

    Book  Google Scholar 

  • Erturk A, Inman DJ (2008) A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. J Vib Acoust 130(4):041002

    Article  Google Scholar 

  • Glynne-Jones P, Beeby SP, James EP, White NM (2001) The modeling of a piezoelectric vibration powered generator for microsystems. In: 11th international conference on solid-state sensors and actuators, Munich, Germany, 10–4 June, transducers 01/euro sensors XV

  • Jahani K, Aghazadeh P (2016) Effects of joint flexibility on the generated power of nonlinear piezoelectric energy harvesters. In: Proceedings of the ASME conference on smart materials, adaptive structures and intelligent systems (SMASIS 2016), Stow, VT, USA

  • Jeon YB, Sood R, Jeong JH, Kim SG (2005) MEMS power generator with transverse mode thin film PZT. Sens Actuators A Phys 122:16–22

    Article  Google Scholar 

  • Lu F, Lee HP, Lim SP (2004) Modelling and analysis of micro piezoelectric power generators for micro-electromechanical-systems applications. Smart Mater Struct 13(1):57–63

    Article  Google Scholar 

  • Mateu L, Moll F (2005) Optimum piezoelectric bending beam structure for energy harvesting using shoe inserts. J Intell Mater Syst Struct 16(10):835–845

    Article  Google Scholar 

  • Meninger S, Mur-Miranda JO, Amirtharajah R, Chandrakasan AP, Lang JH (2001) Vibration-to-electric energy conversion. IEEE Trans Very Large Scale Integr VLSI Syst 9:64–76

    Article  Google Scholar 

  • Mitchson PD, Yeatman EM, Rao GK, Holmes AS, Green TC (2008) Energy harvesting from human and machine motion for wireless electronic devices. Proc IEEE 96(9):1457–1486

    Article  Google Scholar 

  • Rosa M, De Marqui Junior C (2104) Modeling and analysis of a piezoelectric energy harvester with varying cross-sectional area. Shock Vib

  • Roundy S, Wright PK (2004) A piezoelectric vibration based generator for wireless electronics. Smart Mater Struct 13:1131–1142

    Article  Google Scholar 

  • Roundy S, Wright PK, Pister KSJ (2002) Micro-electrostatic vibration-to-electricity converters. ASME IMECE, New Orleans

    Book  Google Scholar 

  • Roundy S, Leland ES, Baker J, Carleton E, Reilly E, Lai E, Otis B, Rabaey JM, Paul Wright K, Sundararajan V (2005) Improving power output for vibration-based energy scavengers. IEEE Pervasive Comput 4:28–36

    Article  Google Scholar 

  • Shen D, Ajitsria J, Choe S-Y, Kim DJ (2007) Evaluation and modeling of power generator with bimorph PZT cantilever. In: MRS symposia proceedings—materials research society, Pittsburgh, vol 996, pp 7–29

  • Shenck NS, Paradiso J (2001) Energy scavenging with shoe-mounted piezoelectrics. Micro IEEE 21(3):30–41

    Article  Google Scholar 

  • Shu YC, Lien IC (2006) Analysis of power output for piezoelectric energy harvesting systems. Smart Mater Struct 15:1499–1512

    Article  Google Scholar 

  • Zhu M, Worthington E, Njuguna J (2009) Analyses of power output of piezoelectric energy harvesting devices directly connected to a load resistor using a coupled piezoelectric-circuit finite element method. IEEE Trans Ultrason Ferroelectr Freq Control 56(7):1309–1318

    Article  Google Scholar 

  • Zhu M, Worthington E, Tiwari A (2010) Design study of piezoelectric energy-harvesting devices for generation of higher electrical power using a coupled piezoelectric-circuit finite element method. IEEE Trans Ultrason Ferroelectr Freq Control 57(2):427–437

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamal Jahani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kianpoor, A., Jahani, K. Modeling and Analyzing of Energy Harvesting from Trapezoidal Piezoelectric Beams. Iran J Sci Technol Trans Mech Eng 43 (Suppl 1), 259–266 (2019). https://doi.org/10.1007/s40997-018-0154-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40997-018-0154-0

Keywords

Navigation