Advertisement

Modeling and Analyzing of Energy Harvesting from Trapezoidal Piezoelectric Beams

  • Arman Kianpoor
  • Kamal JahaniEmail author
Research Paper
  • 99 Downloads

Abstract

In this paper, output power and voltage from piezoelectric materials for trapezoidal sandwich beams, considering proof mass on free end of the beam with base excitation, are formulated. The proposed analytic formulation has a general form and can be applied to rectangular and triangular beams. Using this formulation, geometrical dimensions of a trapezoidal beam with volume less than a cubic centimeter are optimized by implementing the genetic algorithm. This optimized geometry will be able to produce an electrical power of 1.3 mW at the frequency of 50 Hz and electrical resistance of 30 kΩ. Also, the beam is modeled with finite element method to compare resultant output voltage and power with analytical outcomes. An acceptable accuracy in this comparison is observed, so proposed analytic model seems to be an appropriate tool in preliminary design and evaluation of piezoelectric bender energy harvesters.

Keywords

Piezoelectric material Energy harvesting Trapezoidal piezoelectric beam Analytic formulation Optimization 

References

  1. Amirtharajah R, Chandrakasan AP (1998) Self-powered signal processing using vibration-based power generation. IEEE J Solid State Circuits 33(5):687–695CrossRefGoogle Scholar
  2. Anton SR, Sodano HA (2007) A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater Struct 16(3):R1CrossRefGoogle Scholar
  3. Beeby SP, Tudor MJ, White NM (2006) Energy harvesting vibration sources for micro systems applications. Meas Sci Technol 17:175–195CrossRefGoogle Scholar
  4. Ben Ayed S et al (2014) Design and performance of variable-shaped piezoelectric energy harvesters. J Intell Mater Syst Struct 25(2):174–186MathSciNetCrossRefGoogle Scholar
  5. Benasciutti D, Moro L, Zelenika S, Brusa E (2010) Vibration energy scavenging via piezoelectric bimorphs of optimized shapes. Micro Syst Technol 16:657–668CrossRefGoogle Scholar
  6. Elhami M, Glynne-Jones P, White NM, Hill M, Beeby S, James E, Brown AD, Ross JN (2001) Design and fabrication of a new vibration-based electromechanical power generator. Sensors Actuators A Phys 92:335–342CrossRefGoogle Scholar
  7. Elvin N, Erturk A (2013) Advances in energy harvesting methods. Springer, New YorkCrossRefGoogle Scholar
  8. Erturk A, Inman DJ (2008) A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. J Vib Acoust 130(4):041002CrossRefGoogle Scholar
  9. Glynne-Jones P, Beeby SP, James EP, White NM (2001) The modeling of a piezoelectric vibration powered generator for microsystems. In: 11th international conference on solid-state sensors and actuators, Munich, Germany, 10–4 June, transducers 01/euro sensors XVGoogle Scholar
  10. Jahani K, Aghazadeh P (2016) Effects of joint flexibility on the generated power of nonlinear piezoelectric energy harvesters. In: Proceedings of the ASME conference on smart materials, adaptive structures and intelligent systems (SMASIS 2016), Stow, VT, USAGoogle Scholar
  11. Jeon YB, Sood R, Jeong JH, Kim SG (2005) MEMS power generator with transverse mode thin film PZT. Sens Actuators A Phys 122:16–22CrossRefGoogle Scholar
  12. Lu F, Lee HP, Lim SP (2004) Modelling and analysis of micro piezoelectric power generators for micro-electromechanical-systems applications. Smart Mater Struct 13(1):57–63CrossRefGoogle Scholar
  13. Mateu L, Moll F (2005) Optimum piezoelectric bending beam structure for energy harvesting using shoe inserts. J Intell Mater Syst Struct 16(10):835–845CrossRefGoogle Scholar
  14. Meninger S, Mur-Miranda JO, Amirtharajah R, Chandrakasan AP, Lang JH (2001) Vibration-to-electric energy conversion. IEEE Trans Very Large Scale Integr VLSI Syst 9:64–76CrossRefGoogle Scholar
  15. Mitchson PD, Yeatman EM, Rao GK, Holmes AS, Green TC (2008) Energy harvesting from human and machine motion for wireless electronic devices. Proc IEEE 96(9):1457–1486CrossRefGoogle Scholar
  16. Rosa M, De Marqui Junior C (2104) Modeling and analysis of a piezoelectric energy harvester with varying cross-sectional area. Shock VibGoogle Scholar
  17. Roundy S, Wright PK (2004) A piezoelectric vibration based generator for wireless electronics. Smart Mater Struct 13:1131–1142CrossRefGoogle Scholar
  18. Roundy S, Wright PK, Pister KSJ (2002) Micro-electrostatic vibration-to-electricity converters. ASME IMECE, New OrleansCrossRefGoogle Scholar
  19. Roundy S, Leland ES, Baker J, Carleton E, Reilly E, Lai E, Otis B, Rabaey JM, Paul Wright K, Sundararajan V (2005) Improving power output for vibration-based energy scavengers. IEEE Pervasive Comput 4:28–36CrossRefGoogle Scholar
  20. Shen D, Ajitsria J, Choe S-Y, Kim DJ (2007) Evaluation and modeling of power generator with bimorph PZT cantilever. In: MRS symposia proceedings—materials research society, Pittsburgh, vol 996, pp 7–29Google Scholar
  21. Shenck NS, Paradiso J (2001) Energy scavenging with shoe-mounted piezoelectrics. Micro IEEE 21(3):30–41CrossRefGoogle Scholar
  22. Shu YC, Lien IC (2006) Analysis of power output for piezoelectric energy harvesting systems. Smart Mater Struct 15:1499–1512CrossRefGoogle Scholar
  23. Zhu M, Worthington E, Njuguna J (2009) Analyses of power output of piezoelectric energy harvesting devices directly connected to a load resistor using a coupled piezoelectric-circuit finite element method. IEEE Trans Ultrason Ferroelectr Freq Control 56(7):1309–1318CrossRefGoogle Scholar
  24. Zhu M, Worthington E, Tiwari A (2010) Design study of piezoelectric energy-harvesting devices for generation of higher electrical power using a coupled piezoelectric-circuit finite element method. IEEE Trans Ultrason Ferroelectr Freq Control 57(2):427–437CrossRefGoogle Scholar

Copyright information

© Shiraz University 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of TabrizTabrizIslamic Republic of Iran

Personalised recommendations