Skip to main content

Advertisement

Log in

Comparison of Ballistic Impact Behavior of Carbon Fiber/Epoxy Composite and Steel Metal Structures

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Mechanical Engineering Aims and scope Submit manuscript

Abstract

In this paper, ballistic impact behavior of carbon fiber/epoxy composite and steel metal structures with a spherical ball projectile is numerically evaluated. ABAQUS/Explicit software is used to predict the structural response and the damage progression and absorbed energy in the target plates. The predicted damage mechanisms, velocity–time profile and energy absorption threshold of the two target structures agreed very well with results in the reference. Result found the model ballistic limit prediction of 134 m/s. Result also shows that carbon/epoxy composite can withstand higher impact and exhibit excellent energy-absorbing characteristics under high-velocity impact loading conditions than steel metal structures. Therefore, carbon/epoxy composite is considered suitable for applications in automobile and aerospace structures for optimum efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alves M, Chaves C, Birch RS (2003) Impact on aircraft. In: Proceedings of the XVII Brazilian congress of mechanical engineering, São Paulo, Brazil, 10–14 November

  • Brewer JC, Lagace PA (1988) Quadratic stress criterion for initiation of delamination. J Compos Mater 22:1141–1155

    Article  Google Scholar 

  • Bui Q (2010) A modified Benzeggagh–Kenane fracture criterion for mixed-mode delamination. J Compos Mater 45:389–413

    Article  Google Scholar 

  • Bürger D, De Faria AR, De Almeida SF, De Melo FC, Donadon MV (2012) Ballistic impact simulation of an armour-piercing projectile on hybrid ceramic/fiber reinforced composite armours. Int J Impact Eng 43:63–77

    Article  Google Scholar 

  • Da Silva LF, Campilho RD (2012) Advances in numerical modelling of adhesive joints. Springer, Berlin

    Book  MATH  Google Scholar 

  • Daniel IM (2015) Constitutive behavior and failure criteria for composites under static and dynamic loading. Meccanica 50:429–442

    Article  Google Scholar 

  • Daniel IM (2016) Yield and failure criteria for composite materials under static and dynamic loading. Prog Aerosp Sci 81:18–25

    Article  Google Scholar 

  • Davies G, Guiamatsia I (2012) The problem of the cohesive zone in numerically simulating delamination/debonding failure modes. Appl Compos Mater 19:831–838

    Article  Google Scholar 

  • Duodu EA, Gu JN, Shang Z, Ding W, Tang S (2016) Damage induced by high-velocity impact on composite structures using finite element simulation. Iran J Sci Technol Trans Mech Eng. doi:10.1007/s40997-016-0047-z

    Google Scholar 

  • Fang H, Gutowski M, DiSogra M, Wang Q (2016) A numerical and experimental study of woven fabric material under ballistic impacts. Adv Eng Softw 96:14–28

    Article  Google Scholar 

  • Fatt MSH, Palla L, Sirivolu D (2010) Modeling blast and high-velocity impact of composite sandwich panels. In: Daniel I, Gdoutos E, Rajapakse Y (eds) Major accomplishments in composite materials and sandwich structures. Springer, Netherland, pp 661–690

    Google Scholar 

  • García-Castillo SK, Buitrago BL, Barbero E (2011) Behavior of sandwich structures and spaced plates subjected to high-velocity impacts. Polym Compos 32:290–296

    Article  Google Scholar 

  • González E, Maimí P, Camanho P, Turon A, Mayugo J (2012) Simulation of drop-weight impact and compression after impact tests on composite laminates. Compos Struct 94:3364–3378

    Article  Google Scholar 

  • Gowtham H, Pothnis JR, Ravikumar G, Naik N (2013) High strain rate in-plane shear behavior of composites. Polym Test 32:1334–1341

    Article  Google Scholar 

  • Hou J, Petrinic N, Ruiz C, Hallett S (2000) Prediction of impact damage in composite plates. Compos Sci Technol 60:273–281

    Article  Google Scholar 

  • Karim MR (2005) Constitutive modeling and failure criteria of carbon-fiber reinforced polymers under high strain rates. The University of Akron, Akron, USA

    Google Scholar 

  • Kim H, Halpin JC, DeFrancisci GK (2012) Impact damage of composite structures. In: Pochiraju K, Tandon G, Schoeppner G (eds) Long-term durability of polymeric matrix composites. Springer, US, pp 143–180

    Chapter  Google Scholar 

  • Koerber H, Xavier J, Camanho P, Essa Y, de la Escalera FM (2014) High strain rate behaviour of 5-harness-satin weave fabric carbon–epoxy composite under compression and combined compression–shear loading. Int J Sol Struct (54):172–182

    Article  Google Scholar 

  • Meyers MA (1994) Dynamic behavior of materials. Wiley, Hoboken

    Book  MATH  Google Scholar 

  • Naik N, Kavala VR (2008) High strain rate behavior of woven fabric composites under compressive loading. Mater Sci Eng, A 474:301–311

    Article  Google Scholar 

  • Naik N, Shrirao P, Reddy B (2006) Ballistic impact behaviour of woven fabric composites: Formulation. Int J Impact Eng 32(9):1521–1552

    Article  Google Scholar 

  • Naik N, Yernamma P, Thoram N, Gadipatri R, Kavala V (2010) High strain rate tensile behavior of woven fabric e-glass/epoxy composite. Polym Test 29:14–22

    Article  Google Scholar 

  • Pernas-Sánchez J, Artero-Guerrero JA, Viñuela JZ, Varas D, López-Puente J (2014a) Numerical analysis of high velocity impacts on unidirectional laminates. Compos Struct 107:629–634

    Article  Google Scholar 

  • Pernas-Sánchez J, Artero-Guerrero JA, Varas D, López-Puente J (2014b) Experimental analysis of normal and oblique high velocity impacts on carbon/epoxy tape laminates. Compos A Appl Sci Manuf 60:24–31

    Article  Google Scholar 

  • Perogamvros N, Mitropoulos T, Lampeas G (2016) Drop tower adaptation for medium strain rate tensile testing. Exp Mech 56:419–436

    Article  Google Scholar 

  • Sastry YS, Budarapu PR, Krishna Y, Devaraj S (2014) Studies on ballistic impact of the composite panels. Theor Appl Fract Mech 72:2–12

    Article  Google Scholar 

  • Schaefer J, Werner B, Daniel I (2014) Strain-rate-dependent failure of a toughened matrix composite. Exp Mech 54:1111–1120

    Article  Google Scholar 

  • Sevkat E, Liaw B, Delale F, Raju BB (2009) A combined experimental and numerical approach to study ballistic impact response of s2-glass fiber/toughened epoxy composite beams. Compos Sci Technol 69:965–982

    Article  Google Scholar 

  • Shokrieh MM, Mosalmani R, Omidi MJ (2015) A strain-rate dependent micromechanical constitutive model for glass/epoxy composites. Compos Struct 121:37–45

    Article  Google Scholar 

  • Varas D, Artero-Guerrero JA, Pernas-Sánchez J, López-Puente J (2013) Analysis of high velocity impacts of steel cylinders on thin carbon/epoxy woven laminates. Compos Struct 95:623–629

    Article  Google Scholar 

  • Version A (2011) 6.11. User’s manual. Dassault Systemes. Providence, Rhode Island, USA

  • Wang W, Wan X, Zhou J, Zhao M, Li Y, Shang S, Gao X (2012) Damage and failure of laminated carbon-fiber-reinforced composite under low-velocity impact. J Aerosp Eng 27:308–317

    Article  Google Scholar 

  • Werner BT, Schaefer JD, Daniel IM (2014) Deformation and failure of angle-ply composite laminates. In: Tandon G, Tekalur S, Ralph C, Sottos N, Blaiszik B (eds) Experimental mechanics of composite, hybrid, and multifunctional materials, vol 6. Conference proceedings of the society for experimental mechanics series, Springer, Cham, pp 167–171

    Google Scholar 

  • Zhang X, Bianchi F, Liu H (2012) Predicting low-velocity impact damage in composites by a quasi-static load model with cohesive interface elements. Aeronaut J 116:1367–1381

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Innovative Foundation for Doctoral Candidate of Jiangsu Province, China (KYLX15_1049). The authors would like to thank Prof. Chen Wei and Dr. Zhang Chao of the School of Mechanical Engineering, Jiangsu University, for their expert advice on FE modeling and providing the material properties. The authors are also grateful to Guowei Gao, Zhifu Cao, Zhipeng Li and Zaimin Jiang for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Duodu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duodu, E.A., Gu, J., Ding, W. et al. Comparison of Ballistic Impact Behavior of Carbon Fiber/Epoxy Composite and Steel Metal Structures. Iran J Sci Technol Trans Mech Eng 42, 13–22 (2018). https://doi.org/10.1007/s40997-017-0072-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40997-017-0072-6

Keywords

Navigation