Skip to main content
Log in

Equivalent Linear and Nonlinear Site-Specific Ground Response Analysis of Pashto Cultural Museum Peshawar, Pakistan

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Civil Engineering Aims and scope Submit manuscript

Abstract

Site-specific ground response analysis is needed for seismic hazard estimation, and its mitigation is required for seismically active regions of Pakistan. The work presented in the following includes response analysis of a specific site at Peshawar Khyber Pakhtunkhwa using equivalent linear (EL) and also nonlinear (NL) analyses. The site model was developed using the geotechnical investigation data from field investigation and subsequent laboratory tests on representative soil samples. The earthquake records compatible to the seismic activities in the target area are selected and matched to the target response spectra in order to obtain input excitation force for the base ground model. Several issues that are related to site-specific ground response analysis, i.e., shear strain, mobilized shear strength and ground acceleration along depth of soil model, are studied and compared for both EL and NL analyses. The analysis results are also further studied and compared for ground response spectra and amplification factor using both EL and NL analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ahmad M, Iqbal Q, Khan FA (2013) Profiling and zoning of geotechnical sub-soil data using geographic information system. Sci Int 25(3):15–20

    Google Scholar 

  • Akhila M, Ghosh C, Satyam DN (2012) Detailed ground response analysis at park hotel in Kolkata City, India. In: 15 world conference on earthquake engineering (Lisbon)

  • Ancheta TD, Darragh RB, Stewart JP, Seyhan E, Silva WJ, Chiou BSJ, Kishida T (2014) NGA-West2 database. Earthq Spectra 30(3):989–1005

    Article  Google Scholar 

  • Aslam M, Hussain A, Ashraf M, Afridi AGK (2006) Geological map of north west Frontier Province, Geological Survey of Pakistan 68

  • Baise LG, Kaklamanos J, Berry BM, Thompson EM (2016) Soil amplification with a strong impedance contrast: Boston, Massachusetts. Eng Geol 202:1–13

    Article  Google Scholar 

  • BCP (2007) Building codes of Pakistan seismic provisions: government of Islamic Republic of Pakistan ministry of housing and works. PEC (Pakistan Engineering Council), Islamabad

    Google Scholar 

  • Bhatti AQ, Hassan SZU, Rafi Z, Khatoon Z, Ali Q (2011) Probabilistic seismic hazard analysis of Islamabad. Pakistan. J Asian Earth Sci 42(3):468–478

    Article  Google Scholar 

  • Bonaccorso R, Grasso S, Giudice EL, Maugeri M (2005) Cavities and hypogeal structures of the historical part of the City of Catania. WIT Trans State Art Sci Eng 1:197–223

    Article  Google Scholar 

  • Boore DM, Atkinson GM (2008) Ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods between 0.01 s and 10.0 s. Earthq Spectra 24(1):99–138

    Article  Google Scholar 

  • Cavallaro A, Ferraro A, Grasso S, Maugeri M (2012a) Topographic effects on the Monte Po hill in Catania (Italy). Soil Dyn Earthq Eng 43:97–113

    Article  Google Scholar 

  • Cavallaro A, Grasso S, Maugeri M, Motta E (2012b) Site characterisation by in situ and laboratory tests of the sea bed in the Genova Harbour, Italy. Geotechnical and geophysical site characterization. Taylor and Francis Group, London, pp 415–422

    Google Scholar 

  • Cavallaro A, Grasso S, Maugeri M, Motta E (2013) An innovative low-cost SDMT marine investigation for the evaluation of the liquefaction potential in the Genova Harbour, Italy. In: Geotechnical and geophysical site characterization: proceedings of the 4th international conference on site characterization ISC-4, vol 1, pp 637–644. Taylor and Francis Books Ltd., London

  • Dikmen U (2009) Statistical correlations of shear wave velocity and penetration resistance for soils. J Geophys Eng 6:61–72

    Article  Google Scholar 

  • Eskandarinejad A, Jahanandish M, Zafarani H (2017) Divergence between nonlinear and equivalent-linear 1D site response analyses for different V S realizations of typical clay sites. Pure Appl Geophys 174(10):3955–3978

    Article  Google Scholar 

  • Eskandarinejad A, Zafarani H, Jahanandish M (2018) Local site effect of a clay site in Shiraz based on seismic hazard of Shiraz Plain. Nat Hazards 90(3):1115–1135

    Article  Google Scholar 

  • GovindaRaju L, Ramana GV, HanumanthaRao C, Sitharam TG (2004) Site-specific ground response analysis. Current Sci 25:1354–1362

    Google Scholar 

  • Grasso S, Maugeri M (2005) Vulnerability of physical environment of the City of Catania using GIS technique. WIT Trans State Art Sci Eng 8

  • Grasso S, Maugeri M (2009) The seismic microzonation of the city of Catania (Italy) for the maximum expected scenario earthquake of January 11, 1693. Soil Dyn Earthq Eng 29(6):953–962

    Article  Google Scholar 

  • Hasancebi N, Ulusay R (2006) Empirical correlations between shear wave velocity and penetration resistance for ground shaking assessments. Bull Eng Geol Environ 66:203–213

    Article  Google Scholar 

  • Hashash Y (2012) DEEPSOIL v5. 1–Tutorial and user manual 2002–2012. University of Illinois at Urbana-Champaign, Urbana

    Google Scholar 

  • Hashash YM, Kottke AR, Stewart JP, Campbell KW, Kim B, Moss C, Silva WJ (2014) Reference rock site condition for central and eastern North America. Bull Seismol Soc Am 104(2):684–701

    Article  Google Scholar 

  • Hussain A, Pogue K, Khan SR, Ahmad I (1991) Paleozoic stratigraphy of the Peshawar basin, Pakistan. Geol Bull Univ Peshawar 24:85–97

    Google Scholar 

  • Idriss IM, Sun JI (1992) SHAKE91: a computer program for conducting equivalent linear seismic response analyses of horizontally layered soil deposits, user’s guide. University of California, Davis, p 13

    Google Scholar 

  • Imai T, Tonouchi K (1982) Correlation of N-value with S-wave velocity and shear modulus. In: Proceedings 2nd European symposium of penetration testing (Amsterdam), pp 57–72

  • Jafari MK, Asghari A, Rahmani I (1997) Empirical correlation between shear wave velocity (Vs) and SPT-N value for south of Tehran soils. In: Proceedings 4th international conference on civil engineering (Tehran, Iran). (in Persian)

  • Jain A, Kumar D, Singh SK, Kumar A (2000) Timing, quantification and tectonic modeling of Pliocene quaternary movements in the NW Himalaya: evidences from fission track dating. Earth Planet Sci Lett 179:437–451

    Article  Google Scholar 

  • Kaklamanos J, Baise LG, Thompson EM, Dorfmann L (2015) Comparison of 1D linear, equivalent-linear, and nonlinear site response models at six KiK-net validation sites. Soil Dyn Earthq Eng 69:207–219

    Article  Google Scholar 

  • Kiku H, Yoshida N, Yasuda S, Irisawa T, Nakazawa H, Shimizu Y, Ansal A, Erkan A (2001) In-situ penetration tests and soil profiling in Adapazari, Turkey. In: Proceedings ICSMGE/TC4 satellite conference on lessons learned from recent strong earthquakes, pp 259–65

  • Kim B, Hashash YM, Stewart JP, Rathje EM, Harmon JA, Musgrove MI, Silva WJ (2016) Relative differences between nonlinear and equivalent-linear 1-D site response analyses. Earthq Spectra 32(3):1845–1865

    Article  Google Scholar 

  • Kondner RL (1963) A hyperbolic stress-strain formulation for sands. In: Proceedings 2nd Panamerican conference on soil mechanics and foundation engineering, Brazil, vol 1, pp 289–324

  • Kramer SL (1996) Geotechnical earthquake engineering. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Lasley SJ, Green RA, Rodriguez-Marek A (2014) Comparison of equivalent-linear site response analysis software. In: Proceedings, 10th US national conference on earthquake engineering

  • Mahmood K, Rehman Z, Farooq K, Memon SA (2016) One dimensional equivalent linear ground response analysis—a case study of collapsed tower in Islamabad during 2005, Muzaffarabad earthquake. J Appl Geophys 130:110–117

    Article  Google Scholar 

  • Matasovic N (1993) Seismic response of composite horizontally-layered soil deposits. Ph.D. thesis, 449. University of California, Los Angeles

  • Maugeri M, Simonelli AL, Ferraro A, Grasso S, Penna A (2011) Recorded ground motion and site effects evaluation for the April 6, 2009 L’Aquila earthquake. Bull Earthq Eng 9(1):157–179

    Article  Google Scholar 

  • Monaco P, Totani G, Totani F, Grasso S, Maugeri M (2011) Site effects and site amplification due to the 2009 Abruzzo earthquake. WIT Trans Built Environ 120:29–40

    Article  Google Scholar 

  • MonaLiza K, Khwaja AA, Javed M (2004) Seismic hazard assessment of Islamabad, Pakistan, using deterministic approach. Geological Bulletin of the University of Peshawar, Peshawar, pp 199–214

    Google Scholar 

  • Naik NP, Choudhury D (2014) Comparative study of seismic ground responses using DEEPSOIL, SHAKE, and D-MOD for soils of Goa, India, geo-congress 2014 technical papers geo-characterization and modeling for sustainability. ASCE, pp 1101–1110

  • Nath RR, Jakka RS (2012) Effect of bedrock depth on site classification. In: 15th world conference on earthquake engineering 15WCEE. Lisbon, Portugal, pp 24–28

  • Phillips C, Hashash YM (2009) Damping formulation for nonlinear 1D site response analyses. Soil Dyn Earthq Eng 29:1143–1158

    Article  Google Scholar 

  • Seed HB, Idriss IM (1970) Soil moduli and damping factors for dynamic response analyses. Earthquake Engineering Research Center, University of California, Berkeley, Rep. No. EERC-70/10

  • Seed HB, Idriss IM (1981) Evaluation of liquefaction potential of sand deposits based on observation of performance in previous earthquakes. In: Proceedings of the ASCE national fall convention, St. Louis 1981, session No. 24

  • Shukla J, Choudhury D (2012) Seismic hazard and site-specific ground motion for typical ports of Gujarat. Nat Hazards 60(2):541–565

    Article  Google Scholar 

  • Shylamoni P, Choudhury D, Ghosh S, Ghosh AK, Basu PC (2014) Seismic ground response analysis of KK-NPP site in the event of NCO earthquake using DEEPSOIL. Geo-Congress 2014 Publication No. GSP 234, pp 840–849

  • Thaker TP, Rao KS, Gupta KK (2009) One dimensional ground response analysis of coastal soil near Naliya, Kutch, Gujarat. In: Proceedings of Indian geotechnical conference, pp 531–535

  • Vucetic M, Dobry R (1991) Effect of soil plasticity on cyclic response. J Geotech Eng 117:89–107

    Article  Google Scholar 

  • Waseem M, Khan MA, Javed MW, Ali SM (2013) Deterministic seismic hazard analysis for Peshawar, Pakistan. J Himal Earth Sci 46(1):67–72

    Google Scholar 

  • Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull Seismol Soc Am 84:974–1002

    Google Scholar 

  • Zalachoris G, Rathje EM (2015) Evaluation of one-dimensional site response techniques using borehole arrays. J Geotech Geoenviron Eng 141(12):04015053

    Article  Google Scholar 

  • Zaré M, Paridari SK (2008) Balakot, Muzaffarabad Earthquake of 8 October 2005, Mw 7.6; field observations on geological aspects. In: The 14th world conference on earthquake engineering, Beijing, China

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their valuable insightful comments that helped us to improve the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalid Mahmood.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmood, K., Khan, S.A., Iqbal, Q. et al. Equivalent Linear and Nonlinear Site-Specific Ground Response Analysis of Pashto Cultural Museum Peshawar, Pakistan. Iran J Sci Technol Trans Civ Eng 44 (Suppl 1), 179–191 (2020). https://doi.org/10.1007/s40996-020-00346-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40996-020-00346-4

Keywords

Navigation