Analysis of Shear Wall Systems Using Plane Stress Elements

Abstract

Finite element method takes advantage of robust methodology or analysis of different types of structures, particularly the tall buildings. Accordingly, a number of displacement and strain-based finite element approaches have been developed in various fields of civil engineering. However, many lower-order finite element methods still encounter analytical drawbacks dealing with analysis of tall buildings. The absence of an appropriate in-plane rotational stiffness in some of the lower-order finite element analysis methods and the existence of parasitic shear effects in the governing displacement functions are counted as the most effective factors which are likely to emerge within analysis of tall buildings. In this respect, finite element approach is presented in this paper, which is capable of incorporating the stiffness of all lateral load-resisting systems. Furthermore, as the horizontal strains are ignored in all elevation levels of the element, a uniform lateral displacement pattern is obtained for the proposed panel element. This panel-type element is a strain-based element including eight degrees of freedom which has been formulated according to the general behaviour of beam element. Consequently, in order to validate the accuracy and efficiency of the proposed approach, a number of numerical analyses are performed.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Ashwell DG, Sabir AB (1972) A new cylindrical shell finite element based on simple independent strain functions. Int J Mech Sci 14(3):171–183. https://doi.org/10.1016/0020-7403(72)90074-4

    Article  MATH  Google Scholar 

  2. Ashwell DG, Sabir AB, Roberts TM (1971) Further Studies in application of curved finite elements to circular arches. Int J Mech Sci 13(6):507–517. https://doi.org/10.1016/0020-7403(71)90038-5

    Article  Google Scholar 

  3. Atri HR, Shojaee S (2016) Free vibration analysis of thin shell structures using finite element based on isogeometric approach. Iran J Sci Technol Trans Civil Eng 40(2):85–96. https://doi.org/10.1007/s40996-016-0011-6

    Article  Google Scholar 

  4. Belounar L, Guenfoud M (2005) A new rectangular finite element based on the strain approach for plate bending. Thin Walled Struct 43:47–63. https://doi.org/10.1016/j.tws.2004.08.003

    Article  Google Scholar 

  5. Broujerdian V, Ghamari A, Zolghadr R (2019) Investigating a Combinatorial Lateral Resisting System for Tall Buildings. Iran J Sci Technol Trans Civil Eng. https://doi.org/10.1007/s40996-019-00233-7

    Article  Google Scholar 

  6. Chan HC, Kuang JS (1989) Stiffened coupled shear walls. J Eng Mech 115(4):689–703. https://doi.org/10.1061/(ASCE)0733-9399(1989)115:4(689)

    Article  Google Scholar 

  7. Cheung YK, Kwan AKH (1994) Analysis of coupled shear core walls using a beam type element. Eng Struct 16(2):111–118. https://doi.org/10.1016/0141-0296(94)90036-1

    Article  Google Scholar 

  8. Cook RD (1975) Avoidance of parasitic shear in plane element. J Struct Eng ASCE 101(6):1239–1253

    Google Scholar 

  9. Coull A, Smith BS (1991) Tall building structures: analysis and design. Wiley, New York, pp 215–220

    Google Scholar 

  10. Desbois M, Ha KH (1989) Finite elements for tall building analysis. Comput Struct 33(1):249–255. https://doi.org/10.1016/0045-7949(89)90147-8

    Article  MATH  Google Scholar 

  11. Guerraiche Kh, Belounar L, Bouzidi L (2018) A new eight nodes brick finite element based on the strain approach. J Solid Mech 10(1):186–199. http://jsm.iau-arak.ac.ir/article_539718.html

    Google Scholar 

  12. Huang M, Zhao Z, Shen C (2010) An effective planar triangular element with drilling rotation. Finite Elem Anal Des 44:1031–1036. https://doi.org/10.1016/j.finel.2010.07.019

    Article  Google Scholar 

  13. Kheyroddin A, Mirrashid M, Arshadi H (2017) An investigation on the behavior of concrete cores in suspended tall buildings. Iran J Sci Technol Trans Civil Eng 41(4):383–388. https://doi.org/10.1007/s40996-017-0075-y

    Article  Google Scholar 

  14. Kim HS, Lee DG, Kim CK (2005) Efficient 3D seismic analysis of a high rise building structure with shear walls. Eng Struct 27:963–976. https://doi.org/10.1016/j.engstruct.2005.02.006

    Article  Google Scholar 

  15. Kwan AKH (1992) Analysis of buildings using strain based element with rotational d.o.f.s. J Struct Eng ASCE 118(5):1191–1212. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:5(1191)

    Article  Google Scholar 

  16. Kwan AKH (1993a) Equivalence of finite elements and analogous frame methodology for shear core wall analysis. Comput Struct 48:615–625. https://doi.org/10.1016/0045-7949(94)00604-2

    Article  Google Scholar 

  17. Kwan AKH (1993b) Improved wide column frame analogy for shear core wall. J Struct Eng ASCE 119(2):420–437. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:2(420)

    Article  Google Scholar 

  18. Macleod IA (1969) New rectangular finite element for shear wall analysis. J Struct Eng ASCE 95(ST3):399–409

    Google Scholar 

  19. Macleod IA, Hosney H (1977) Frame analysis of shear wall cores. J Struct Eng ASCE 103(10):2037–2047

    Google Scholar 

  20. Meshkat-Dini A, Tehranizadeh M (2009) Torsion analysis of high-rise buildings using quadrilateral panel elements with drilling D.O.F.s. Amirkabir J Sci Technol 41(1):59–67. https://doi.org/10.22060/miscj.2009.229

    Article  Google Scholar 

  21. Naderpour H, Mirrashid M (2019) Evaluation and verification of finite element analytical models in reinforced concrete members. Iran J Sci Technol Trans Civil Eng. https://doi.org/10.1007/s40996-019-00240-8

    Article  Google Scholar 

  22. Oztorun NK (2006) A rectangular finite element formulation. Finite Elem Anal Des 42(12):1031–1052. https://doi.org/10.1016/j.finel.2006.03.004

    Article  Google Scholar 

  23. Paknahad M, Noorzaei J, Thanoon WA (2007) Analysis of shear wall structures using optimal membrane triangle element. Finite Elem Anal Des 43(11-12):861–869. https://doi.org/10.1016/j.finel.2007.05.010

    Article  Google Scholar 

  24. Prathap G (1982) Reduced integration and the shear-flexible beam element. Int J Numer Methods Eng 18:195–210. https://doi.org/10.1002/nme.1620180205

    Article  MATH  Google Scholar 

  25. Rebiai C (2018) Finite element analysis of 2-D structures by new strain based triangular element. J Mech. https://doi.org/10.1017/jmech.2018.3

    Article  Google Scholar 

  26. Rebiai C, Belounar L (2013) A new strain based rectangular finite element with drilling Rotation for linear and nonlinear analysis. Arch Civ Mech Eng 13(1):72–81. https://doi.org/10.1016/j.acme.2012.10.001

    Article  Google Scholar 

  27. Reddy JN (1997) On locking-free shear deformable beam finite elements. Comput Methods Appl Mech Eng 149:113–132. https://doi.org/10.1016/S0045-7825(97)00075-3

    Article  MATH  Google Scholar 

  28. Sabir AB (1972) A curved cylindrical shell finite element. Int J Mech Sci 14(2):125–135. https://doi.org/10.1016/0020-7403(72)90093-8

    Article  MATH  Google Scholar 

  29. Sabir AB (1985) A rectangular and triangular plane elasticity element with drilling degrees of freedom. In: Proceedings of the 2nd international conference on variational methods in engineering. Southampton University. Springer, Berlin, pp 17–25 (Chapter 9)

  30. Sabir AB, Salhi HY (1986) A strain based finite element for general plane elasticity in polar coordinates. RES 19:1–16. https://doi.org/10.1007/978-3-642-61381-4_155

    Article  Google Scholar 

  31. Sabir AB, Sfendji A (1995) Triangular and rectangular plane elasticity finite elements. Thin Walled Struct 21:225–232. https://doi.org/10.1016/0263-8231(94)00002-H

    Article  Google Scholar 

  32. Smith BS, Taranath B (1972) The analysis of tall core supported structure subject to torsion. Proc Inst Civ Eng 53(Part 2):173–188. https://doi.org/10.1016/0360-1323(81)90016-0

    Article  Google Scholar 

  33. Taranath SB (1998) Structural analysis and design of tall buildings, 2nd edn. McGraw-Hill, New York, pp 332–380

    Google Scholar 

Download references

Acknowledgements

Hossein Rahami is grateful to the University of Tehran for this research under Grant No. 27938/01/20.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hossein Rahami.

Appendix

Appendix

The stiffness matrix of the proposed panel element PE is given as follows:

$$ \left[ K \right] = \left[ {K_{F} } \right] + \left[ {K_{S} } \right] $$
figurea
figureb

The strain–displacement matrix [B] of the proposed panel element PE is also in the formulations given as follows:

figurec

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sepehrnia, S., Rahami, H., Mirhosseini, M. et al. Analysis of Shear Wall Systems Using Plane Stress Elements. Iran J Sci Technol Trans Civ Eng 44, 27–34 (2020). https://doi.org/10.1007/s40996-019-00314-7

Download citation

Keywords

  • Tall Building
  • Strain-based finite element method
  • In-plane rotation
  • Coupling effect