Multi-scale Approach from Atomistic to Macro for Simulation of the Elastic Properties of Cement Paste

Abstract

In this study, first of all, the atomistic structure of cement hydration products is estimated via molecular dynamics method and their elastic properties are extracted. Then, cement hydration simulation is done by HYMOSTRUC3D model and the obtained results from both molecular dynamics and HYMOSTRUC3D methods are used for simulation in macro-scales through analytic and lattice methods. Finally, elastic properties of cement paste are estimated with two mentioned methods and compared with each other and also with literature. The study, in fact, aims to investigate an appropriate multi-scale simulation model to examine cement paste elastic properties.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. Al-Matar AK, Tobgy AH, Suleiman IA, Al-Faiad MA (2015) Improving Monte-Carlo and molecular dynamics simulation outcomes using temperature-dependent interaction parameters: the case of pure LJ fluid. Int J Comput Methods 12(02):1550003

    Article  Google Scholar 

  2. Biernacki JJ, Gottapu M (2015) An advanced single-particle model for C3S hydration-validating the statistical independence of model parameters. Comput Concr 15(6):989–999

    Article  Google Scholar 

  3. Bonaccorsi E, Merlino S, Kampf AR (2005) The crystal structure of tobermorite 14 Å (plombierite), a C–S–H phase. J Am Ceram Soc 88(3):505–512

    Article  Google Scholar 

  4. Boumiz A, Vernet C, Tenoudji FC (1996) Mechanical properties of cement pastes and mortars at early ages: evolution with time and degree of hydration. Adv Cem Based Mater 3(3–4):94–106

    Google Scholar 

  5. Bournazel JP, Malier Y, Moranville Regourd M (1998) Concrete: from material to structure proceedings of the RILEM international conference, Arles

  6. Constantinides G, Ulm FJ (2004) The effect of two types of CSH on the elasticity of cement-based materials: results from nanoindentation and micromechanical modeling. Cem Concr Res 34(1):67–80

    Article  Google Scholar 

  7. Constantinides G, Ulm FJ (2007) The nanogranular nature of C–S–H. J Mech Phys Solids 55(1):64–90

    MATH  Article  Google Scholar 

  8. Dharmawardhana C, Bakare M, Misra A, Ching WY (2016) Nature of interatomic bonding in controlling the mechanical properties of calcium silicate hydrates. J Am Ceram Soc 99(6):2120–2130

    Article  Google Scholar 

  9. Gao Y, De Schutter G, Ye G, Yu Z, Tan Z, Wu K (2013) A microscopic study on ternary blended cement based composites. Constr Build Mater 46:28–38

    Article  Google Scholar 

  10. Garboczi EJ, Bentz DP (2001) The effect of statistical fluctuation, finite size error, and digital resolution on the phase percolation and transport properties of the NIST cement hydration model. Cem Concr Res 31(10):1501–1514

    Article  Google Scholar 

  11. Haecker CJ, Garboczi EJ, Bullard JW, Bohn RB, Sun Z, Shah SP, Voigt T (2005) Modeling the linear elastic properties of Portland cement paste. Cem Concr Res 35(10):1948–1960

    Article  Google Scholar 

  12. Hajilar S, Shafei B (2015) Nano-scale investigation of elastic properties of hydrated cement paste constituents using molecular dynamics simulations. Comput Mater Sci 101:216–226

    Article  Google Scholar 

  13. Hajilar S, Shafei B (2016) Assessment of structural, thermal, and mechanical properties of portlandite through molecular dynamics simulations. J Solid State Chem 244:164–174

    Article  Google Scholar 

  14. Halstead PE, Moore AE (1957) The thermal dissociation of calcium hydroxide. J Chem Soc 769:3873–3875

    Article  Google Scholar 

  15. Hou D, Li H, Zhang L, Zhang J (2018) Nano-scale mechanical properties investigation of CSH from hydrated tri-calcium silicate by nano-indentation and molecular dynamics simulation. Constr Build Mater 189:265–275

    Article  Google Scholar 

  16. Janakiram Subramani V, Murray S, Panneer Selvam R, Hall KD (2009) Atomic structure of calcium silicate hydrates using molecular mechanics. In: Transportation research board 88th annual meeting (no. 09-0200)

  17. Jennings HM, Thomas JJ, Gevrenov JS, Constantinides G, Ulm FJ (2007) A multi-technique investigation of the nanoporosity of cement paste. Cem Concr Res 37(3):329–336

    Article  Google Scholar 

  18. Jo BW, Tae GH, Schlangen E, Kim CH (2005) Crack propagation simulation of concrete with the regular triangular lattice model. Comput Concr 2(2):165–176

    Article  Google Scholar 

  19. Knudsen FP (1959) Dependence of mechanical strength of brittle polycrystalline specimens on porosity and grain size. J Am Ceram Soc 42:376–387

    Article  Google Scholar 

  20. Koenders EAB (1997) Simulation of volume changes in hardening cement-based materials. PhD thesis, Delft University of Technology, Delft

  21. Kurdowski W (2014) Cement and concrete chemistry. Springer, Berlin

    Google Scholar 

  22. Liu R, Wang L (2015) Vibration of cantilevered double-walled carbon nanotubes predicted by timoshenko beam model and molecular dynamics. Int J Comput Methods 12(04):1540017

    MathSciNet  MATH  Article  Google Scholar 

  23. Luković M, Schlangen E, Ye G (2015) Combined experimental and numerical study of fracture behaviour of cement paste at the microlevel. Cem Concr Res 73:123–135

    Article  Google Scholar 

  24. Manzano Moro H (2014) Atomistic simulation studies of the cement paste components. Servicio Editorial de la Universidad del País Vasco/Euskal Herriko Unibertsitatearen Argitalpen Zerbitzua

  25. Manzano H, Dolado JS, Guerrero A, Ayuela A (2007) Mechanical properties of crystalline calcium-silicate-hydrates: comparison with cementitious C-S–H gels. Phys Status Solidi (A) 204(6):1775–1780

    Article  Google Scholar 

  26. Manzano H, Durgun E, López-Arbeloa I, Grossman JC (2015) Insight on tricalcium silicate hydration and dissolution mechanism from molecular simulations. ACS Appl Mater Interfaces 7:14726–14733

    Article  Google Scholar 

  27. Merlino S, Bonaccorsi E, Armbruster T (1999) Tobermorites: their real structure and order–disorder (OD) character. Am Miner 84:1613–1621

    Article  Google Scholar 

  28. Mondal P, Jeffery JW (1975) The crystal structure of tricalcium aluminate, Ca3Al2O6. Acta Crystallogr Sect B Struct Crystallogr Cryst Chem 31(3):689–697

    Article  Google Scholar 

  29. Mondal P, Shah SP, Marks L (2007) A reliable technique to determine the local mechanical properties at the nanoscale for cementitious materials. Cem Concr Res 37(10):1440–1444

    Article  Google Scholar 

  30. Monteiro P (2006) Concrete: microstructure, properties, and materials. McGraw-Hill, Maidenherd

    Google Scholar 

  31. Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21(5):571–574

    Article  Google Scholar 

  32. Pollitt HWW, Brown AW (1968) 5th ICCC Tokyo, vol I, Tokyo, p 322

  33. Qian Z, Schlangen E, Ye G, Van Breugel K (2010) Prediction of mechanical properties of cement paste at microscale. Mater Constr 60(297):7–18

    Article  Google Scholar 

  34. Sanahuja J, Dormieux L, Chanvillard G (2007) Modelling elasticity of a hydrating cement paste. Cem Concr Res 37(10):1427–1439

    Article  Google Scholar 

  35. Šavija B, Luković M, Pacheco J, Schlangen E (2013) Cracking of the concrete cover due to reinforcement corrosion: a two-dimensional lattice model study. Constr Build Mater 44:626–638

    Article  Google Scholar 

  36. Schlangen E, Van Mier JGM (1992) Simple lattice model for numerical simulation of fracture of concrete materials and structures. Mater Struct 25(9):534–542

    Article  Google Scholar 

  37. Scrivener KL, Fullmann T, Gallucci E, Walenta G, Bermejo E (2004) Quantitative study of Portland cement hydration by X-ray diffraction/Rietveld analysis. Cem Concr Res 34(9):1541–1547

    Article  Google Scholar 

  38. Shahsavari R, Pellenq RJM, Ulm FJ (2011) Empirical force fields for complex hydrated calcio-silicate layered materials. Phys Chem Chem Phys 13(3):1002–1011

    Article  Google Scholar 

  39. Shokravi M (2017) Vibration analysis of silica nanoparticles-reinforced concrete beams considering agglomeration effects. Comput Concr 19(3):333–338

    Article  Google Scholar 

  40. Sun B, Wang X, Li Z (2015) Meso-scale image-based modeling of reinforced concrete and adaptive multi-scale analyses on damage evolution in concrete structures. Comput Mater Sci 110:39–53

    Article  Google Scholar 

  41. Tarighat A, Tavakoli D (2016) Estimation of mechanical properties of hardened cement paste with molecular dynamics simulation method at nano scale. Modares Mech Eng 16(6):71–78

    Google Scholar 

  42. Tarighat A, Tavakoli D (2019) Estimation of the elastic properties of important calcium silicate hydrates in nano scale-a molecular dynamics approach. J Rehabil Civ Eng 7(3):41–60

    Google Scholar 

  43. Tarighat A, Zehtab B, Tavakoli D (2016) An introductory review of simulation methods for the structure of cementitious material hydrates at different length scales. Pertanika J Sci Technol (JST) 24(1):27–39

    Google Scholar 

  44. Tavakoli D, Tarighat A (2016) Molecular dynamics study on the mechanical properties of Portland cement clinker phases. Comput Mater Sci 119:65–73

    Article  Google Scholar 

  45. Tavakoli D, Tarighat A, Beheshtian J (2017) Nanoscale investigation of the influence of water on the elastic properties of C-S–H gel by molecular simulation. Proc Inst Mech Eng Part L J Mater Des Appl. https://doi.org/10.1177/1464420717740926

    Article  Google Scholar 

  46. Tennis PD, Jennings HM (2000) A model for two types of calcium silicate hydrate in the microstructure of Portland cement pastes. Cem Concr Res 30(6):855–863

    Article  Google Scholar 

  47. Torquato S, Stillinger FH (2007) Toward the jamming threshold of sphere packings: tunneled crystals. J Appl Phys 102(9):093511

    Article  Google Scholar 

  48. Uchikawa H (1989) Similarities and discrepancies of hardened cement paste, mortar, and concrete from the standpoints of composition and structure. In: Gartner E (ed) Advances in cement manufacture and use. Engineering Foundation, New York, pp 271–294

    Google Scholar 

  49. van Breugel K (1991) Simulation of hydration and formation of structure in hardening cement-based materials. PhD thesis, Delft University of Technology, Delft

  50. van Breugel K (1995) Numerical simulation of hydration and microstructural development in hardening cement-based materials (I) theory. Cem Concr Res 25(2):319–331

    Article  Google Scholar 

  51. Wu Y, Xiao J (2017) The multiscale spectral stochastic finite element method for chloride diffusion in recycled aggregate concrete. Int J Comput Methods 15:1750078

    Article  Google Scholar 

  52. Wu L, Liu P, Zhang Z, Zhu D, Wang H (2018) Multiscale modeling for high-performance concrete: a review. Int J Multiscale Comput Eng 16(3):267–283

    Article  Google Scholar 

  53. Yang Y, Patel RA, Churakov SV, Prasianakis NI, Kosakowski G, Wang M (2019) Multiscale modeling of ion diffusion in cement paste: electrical double layer effects. Cement Concr Compos 96:55–65

    Article  Google Scholar 

  54. Ye G (2003) Experimental study and numerical simulation of the development of the microstructure and permeability of cementitious materials. PhD thesis, Delft University of Technology, Delft

  55. Ye G, Van Breugel K, Fraaij ALA (2003) Experimental study and numerical simulation on the formation of microstructure in cementitious materials at early age. Cem Concr Res 33(2):233–239

    Article  Google Scholar 

  56. Zehtab B, Tarighat A (2016) Diffusion study for chloride ions and water molecules in CSH gel in nano-scale using molecular dynamics: case study of tobermorite. Adv Concr Constr 4(4):305–317

    Article  Google Scholar 

  57. Zhang Q, Ye G (2018) Modelling microstructural changes of ordinary Portland cement paste at elevated temperature. Adv Cem Res 31(1):26–42

    Article  Google Scholar 

  58. Zhang H, Šavija B, Chaves Figueiredo S, Lukovic M, Schlangen E (2016) Microscale testing and modelling of cement paste as basis for multi-scale modelling. Materials 9(11):907

    Article  Google Scholar 

  59. Zhu W, Hughes JJ, Bicanic N, Pearce CJ (2007) Nanoindentation mapping of mechanical properties of cement paste and natural rocks. Mater Charact 58(11):1189–1198

    Article  Google Scholar 

  60. Zhutovsky S, Karinski YS, Yankelevsky DZ, Feldgun VR (2018) Multiscale model for the prediction of equation of state for cement paste and mortar. Int J Solids Struct 152:324–335

    Article  Google Scholar 

  61. Zohdi TI, Wriggers P (2008) An introduction to computational micromechanics. Springer, Berlin

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Davoud Tavakoli or Amir Tarighat.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tavakoli, D., Gao, P., Tarighat, A. et al. Multi-scale Approach from Atomistic to Macro for Simulation of the Elastic Properties of Cement Paste. Iran J Sci Technol Trans Civ Eng 44, 861–873 (2020). https://doi.org/10.1007/s40996-019-00288-6

Download citation

Keywords

  • Molecular dynamics
  • HYMOSTRUC3D
  • Cement paste
  • Lattice model
  • Elastic properties