A Novel Formulation for the Compressive Strength of IBP-Based Geopolymer Stabilized Clayey Soils Using ANN and GMDH-NN Approaches

Abstract

Applicability of geopolymer binder, as one of the environmentally friendly materials in geotechnical constructions, can be evaluated by the compressive strength. Due to the difficulties and time-consuming process of experimental studies, soft computing approaches would be considerable. Feasibility and the performance of the neural network-based group method of data handling (GMDH-NN) and artificial neural network (ANN) for unconfined compressive strength (UCS) prediction were investigated in this paper. Ground-granulated blast-furnace slag was used as geopolymer source material, and the alkali activator was sodium hydroxide solution. According to previous researches, soil plasticity index, ground-granulated blast-furnace slag percentage, the molar concentration of activator, activator-to-binder ratio, sodium-to-alumina atomic ratio and silicate-to-alumina atomic ratio were chosen as essential parameters for mechanical behavior of stabilized soil and consequently as the input parameters for the purpose of UCS prediction. The statistical results of this study showed that GMDH-NN and ANN are reliable approaches to be utilized for geopolymer stabilized soil UCS value prediction. Performances of these two methods for predicting unseen data were acceptable based on the coefficient of determination which is 0.9677 and 0.9741 for GMDH-NN and ANN techniques, respectively. Moreover, a novel direct formulation is provided employing a GMDH-NN method which can be used for ease of UCS calculation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Chen Q, Norcio AF, Wang J (2000) Neural network based stereotyping for user profiles. Neural Comput Appl 9:259–265. https://doi.org/10.1007/s005210070003

    Article  MATH  Google Scholar 

  2. Cristelo N, Glendinning S, Fernandes L, Pinto AT (2012) Effect of calcium content on soil stabilisation with alkaline activation. Constr Build Mater 29:167–174. https://doi.org/10.1016/j.conbuildmat.2011.10.049

    Article  Google Scholar 

  3. Cristelo N, Glendinning S, Fernandes L, Pinto AT (2013) Effects of alkaline-activated fly ash and Portland cement on soft soil stabilisation. Acta Geotech 8:395–405. https://doi.org/10.1007/s11440-012-0200-9

    Article  Google Scholar 

  4. Davies MCR (2011) Editorial. Proc Inst Civ Eng Gr Improv 164:1. https://doi.org/10.1680/grim.2011.164.1.1

    Article  MATH  Google Scholar 

  5. Escalante-Garcia JI, Espinoza-Perez LJ, Gorokhovsky A, Gomez-Zamorano LY (2009) Coarse blast furnace slag as a cementitious material, comparative study as a partial replacement of Portland cement and as an alkali activated cement. Constr Build Mater 23:2511–2517. https://doi.org/10.1016/j.conbuildmat.2009.02.002

    Article  Google Scholar 

  6. Farlow SJ (1984) Self-organizing methods in modeling: GMDH type algorithms. CrC Press, Boca Raton

    Google Scholar 

  7. Frank IE, Todeschini R (1994) The data analysis handbook. Elsevier Science Inc, Amsterdam

    Google Scholar 

  8. Ghadir P, Ranjbar N (2018) Clayey soil stabilization using geopolymer and Portland cement. Constr Build Mater 188:361–371. https://doi.org/10.1016/j.conbuildmat.2018.07.207

    Article  Google Scholar 

  9. Golbraikh A, Tropsha A (2002) Beware of q2! J Mol Gr Model 20:269–276. https://doi.org/10.1016/S1093-3263(01)00123-1

    Article  Google Scholar 

  10. Hataf N, Ghadir P, Ranjbar N (2018) Investigation of soil stabilization using chitosan biopolymer. J Clean Prod 170:1493–1500. https://doi.org/10.1016/j.jclepro.2017.09.256

    Article  Google Scholar 

  11. Hilf JW (1991) Compacted fill. Foundation engineering handbook. Springer, US, pp 249–316

    Google Scholar 

  12. Horpibulsuk S, Phetchuay C, Chinkulkijniwat A, Cholaphatsorn A (2013) Strength development in silty clay stabilized with calcium carbide residue and fly ash. Soils Found 53:477–486. https://doi.org/10.1016/j.sandf.2013.06.001

    Article  Google Scholar 

  13. Hossein Alavi A, Hossein Gandomi A, Mollahassani A et al (2010) Modeling of maximum dry density and optimum moisture content of stabilized soil using artificial neural networks. J Plant Nutr Soil Sci 173:368–379. https://doi.org/10.1002/jpln.200800233

    Article  Google Scholar 

  14. Ivakhnenko AG (1971) Polynomial theory of complex systems. IEEE Trans Syst Man Cybern 1:364–378

    MathSciNet  Article  Google Scholar 

  15. Javdanian H (2017a) The effect of geopolymerization on the unconfined compressive strength of stabilized fine-grained soils. Int J Eng B Appl 30:1673–1680

    Google Scholar 

  16. Javdanian H (2017b) Assessment of shear stiffness ratio of cohesionless soils using neural modeling. Model Earth Syst Environ 3:1045–1053. https://doi.org/10.1007/s40808-017-0351-7

    Article  Google Scholar 

  17. Javdanian H (2017c) Evaluation of soil liquefaction potential using energy approach: experimental and statistical investigation. Bull Eng Geol Environ. https://doi.org/10.1007/s10064-017-1201-6

    Article  Google Scholar 

  18. Kampala A, Horpibulsuk S (2012) Engineering properties of silty clay stabilized with calcium carbide residue. Mater Civ Eng 25:632–644. https://doi.org/10.1061/(asce)mt.1943-5533.0000618

    Article  Google Scholar 

  19. Kampala A, Horpibulsuk S, Prongmanee N, Chinkulkijniwat A (2014) Influence of wet-dry cycles on compressive strength of calcium carbide residue-fly ash stabilized clay. J Mater Civ Eng 26:633–643. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000853

    Article  Google Scholar 

  20. Kou S (2006) Reusing recycled aggregates in structural concrete. PhD thesis. Hong Kong Polytechnic University. Hong Kong, China, p 278. http://hdl.handle.net/10397/2149

  21. Kumar Sharma A, Sivapullaiah PV (2012) Improvement of strength of expansive soil with waste granulated blast furnace slag. In: Hryciw RD, Athanasopoulos-Zekkos A, Yesiller N (eds) GeoCongress 2012. American Society of Civil Engineers, Reston, VA, pp 3920–3928

    Google Scholar 

  22. Kumar S, Kumar R, Alex TC et al (2007) Influence of reactivity of fly ash on geopolymerisation. Adv Appl Ceram 106:120–127. https://doi.org/10.1179/174367607X159293

    Article  Google Scholar 

  23. Kuo YL, Jaksa MB, Lyamin AV, Kaggwa WS (2009) ANN-based model for predicting the bearing capacity of strip footing on multi-layered cohesive soil. Comput Geotech 36:503–516. https://doi.org/10.1016/j.compgeo.2008.07.002

    Article  Google Scholar 

  24. Madala HR, Ivakhnenko AG (1994) Inductive learning algorithms for complex systems modeling. CRC Press, Boca Raton

    Google Scholar 

  25. Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11:431–441. https://doi.org/10.1137/0111030

    MathSciNet  Article  MATH  Google Scholar 

  26. Mozumder RA, Laskar AI (2015) Prediction of unconfined compressive strength of geopolymer stabilized clayey soil using artificial neural network. Comput Geotech 69:291–300. https://doi.org/10.1016/j.compgeo.2015.05.021

    Article  Google Scholar 

  27. Mozumder RA, Laskar AI, Hussain M (2017) Empirical approach for strength prediction of geopolymer stabilized clayey soil using support vector machines. Constr Build Mater 132:412–424. https://doi.org/10.1016/j.conbuildmat.2016.12.012

    Article  Google Scholar 

  28. Naderpour H, Rafiean AH, Fakharian P (2018) Compressive strength prediction of environmentally friendly concrete using artificial neural networks. J Build Eng. https://doi.org/10.1016/j.jobe.2018.01.007

    Article  Google Scholar 

  29. Nenadović SS, Kljajević LM, Nešić MA et al (2017) Structure analysis of geopolymers synthesized from clay originated from Serbia. Environ Earth Sci 76:79. https://doi.org/10.1007/s12665-016-6360-4

    Article  Google Scholar 

  30. Olden DAJDYJ (2002) Illuminating the “black box”: a randomization approach for understanding variable contributions in artificial neuronal networks. Ecol Modell 154:135–150. https://doi.org/10.1016/S0304-3800(02)00064-9

    Article  Google Scholar 

  31. Ranjbar N, Mehrali M, Maheri MR, Mehrali M (2017) Hot-pressed geopolymer. Cem Concr Res 100:14–22. https://doi.org/10.1016/j.cemconres.2017.05.010

    Article  Google Scholar 

  32. Rezazadeh Eidgahee D, Haddad A, Naderpour H (2018) Evaluation of shear strength parameters of granulated waste rubber using artificial neural networks and group method of data handling. Sci Iran. https://doi.org/10.24200/sci.2018.5663.1408

    Article  Google Scholar 

  33. Salahudeen AB, Ochepo J (2015) Effect of bagasse ash on some engineering properties of lateritic soil. Jordan J Civ Eng 9:468–476

    Article  Google Scholar 

  34. Salahudeen AB, Eberemu AO, Osinubi KJ (2014) Assessment of cement kiln dust-treated expansive soil for the construction of flexible pavements. Geotech Geol Eng 32:923–931

    Article  Google Scholar 

  35. Salahudeen AB, Ijimdiya TS, Eberemu AO, Osinubi KJ (2018) Artificial neural networks prediction of compaction characteristics of black cotton soil stabilized with cement kiln dust. Soft Comput Civ Eng 2:50–71

    Google Scholar 

  36. Scrivener KL, Kirkpatrick RJ (2008) Innovation in use and research on cementitious material. Cem Concr Res 38:128–136. https://doi.org/10.1016/j.cemconres.2007.09.025

    Article  Google Scholar 

  37. Shahin MA, Maier HR, Jaksa MB (2004) Data division for developing neural networks applied to geotechnical engineering. J Comput Civ Eng 18:105–114. https://doi.org/10.1061/(ASCE)0887-3801(2004)18:2(105)

    Article  Google Scholar 

  38. Smith GN (1986) Probability and statistics in civil engineering: an introduction. Collins Professional and Technical Books, London. https://www.worldcat.org/title/probability-and-statistics-in-civil-engineering-an-introduction/oclc/15592981

  39. Sumajouw DMJ, Hardjito D, Wallah SE, Rangan BV (2007) Fly ash-based geopolymer concrete: study of slender reinforced columns. J Mater Sci 42:3124–3130. https://doi.org/10.1007/s10853-006-0523-8

    Article  Google Scholar 

  40. Verdolotti L, Iannace S, Lavorgna M, Lamanna R (2008) Geopolymerization reaction to consolidate incoherent pozzolanic soil. J Mater Sci 43:865–873. https://doi.org/10.1007/s10853-007-2201-x

    Article  Google Scholar 

  41. Yi Y, Li C, Liu S (2015) Alkali-activated ground-granulated blast furnace slag for stabilization of marine soft clay. J Mater Civ Eng 27:04014146. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001100

    Article  Google Scholar 

  42. Zhang M, Guo H, El-Korchi T et al (2013) Experimental feasibility study of geopolymer as the next-generation soil stabilizer. Constr Build Mater 47:1468–1478. https://doi.org/10.1016/j.conbuildmat.2013.06.017

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Abdolhosein Haddad.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rezazadeh Eidgahee, D., Rafiean, A.H. & Haddad, A. A Novel Formulation for the Compressive Strength of IBP-Based Geopolymer Stabilized Clayey Soils Using ANN and GMDH-NN Approaches. Iran J Sci Technol Trans Civ Eng 44, 219–229 (2020). https://doi.org/10.1007/s40996-019-00263-1

Download citation

Keywords

  • Geopolymer
  • Soil stabilization
  • Soft computing approaches
  • Artificial neural networks (ANN)
  • Neural network-based group method of data handling (GMDH-NN)