Skip to main content
Log in

Abstract

Peat soil normally has high organic matter content, high compressibility, and high magnitude and rate of creep. It may also be associated with poor strength characteristics and a risk of large deformation. The aim of this work is to demonstrate the application of cement kiln dust (CKD) as a pozzolanic additive to stabilize Urmia peat. CKD was added to Urmia peat by 10, 20 and 30 wt% of dry peat and was allowed to cure in water for 7, 14 and 28 days. Test specimens of untreated and stabilized peat were tested to evaluate their unconfined compressive strength (UCS), California bearing ratio (CBR) and shear strength parameters. The results showed that CKD-treated peat samples, particularly those with longer curing time, have higher cohesion, angle of internal friction, CBR and UCS compared to natural peat. Findings of this research advocate that the use of cement kiln dust as an additive to peat improves its geotechnical characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abdel Aziz SHM, Altohamy AK, Towfeek AR (2010) Physical and chemical properties for stabilized sand using cement kiln dust. J Eng Sci Assiut Univ 38(3):655–669

    Google Scholar 

  • Albusoda BS, Salem LAKh (2012) Stabilization of dune sand by using cement kiln dust (CKD). J Earth Sci Geotech Eng 2(1):131–143

    Google Scholar 

  • Al-Harthy AS, Taha R, Al-Maamary F (2003) Effect of cement kiln dust (CKD) on mortar and concrete mixtures. Constr Build Mater 17:353–360

    Article  Google Scholar 

  • Amadi AA (2014) Enhancing durability of quarry fines modified black cotton soil subgrade with cement kiln dust stabilization. J Transp Geotech 1:55–61

    Article  Google Scholar 

  • Aminur MR, Kolay PK, Taib SNL (2009) Effect of admixtures on the stabilization of peat soil from Sarawak. In: Indian geotechnical conference, pp 410–414

  • Andriesse JP (1988) Nature and management of tropical peat soils, 1st edn. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Badv K, Emami R (2011) Prediction of the settlement and control of the embankment constructed on soft foundation using geotextile reinforcement (case study of Shahid Kalantary highway at Kilometers 7 + 800). J Civ Eng Univ Ferdowsi Mashhad 22(2):33–46 (in Persian)

    Google Scholar 

  • Badv K, Sayadian T (2011) Physical and geotechnical properties of Urmia peat. In: 14th Pan-American conference on soil mechanics and geotechnical engineering and 64th Canadian geotechnical conference, Toronto, Canada, pp 1–7

  • Badv K, Sayadian T (2012) An investigation into the geotechnical characteristics of Urmia peat. Iran J Sci Technol Trans Civ Eng 36(C2):167–180

    Google Scholar 

  • Ballivy B, Rouis J, Breton D (1992) Use of cement residual kiln dust as landfill liner. In: Proceedings of the cement industry solutions to waste management, Calgary, Alberta, Canada, pp 99–118

  • Cai Y, Shi B, Ng CWW, Tang C (2006) Effect of polypropylene fiber and lime admixture on engineering properties of clayey soil. Eng Geol 87:230–240

    Article  Google Scholar 

  • Den Haan EJ (1997) An overview of the mechanical behavior of peats and organic soils and some appropriate construction techniques. In: Proceedings of the conference on recent advances in soft soil engineering, Kuching, Malaysia, pp 17–45

  • Denhaan EJ (1997) An overview of the mechanical behaviour of peats and organic soils and some appropriate construction techniques. In: Huat B (ed) Proceedings of conference on recent advances in soft soil engineering, Sarawak, Malaysia, pp 17–45

  • Edil TB (2003) Recent advancements in geotechnical characterization and construction over peat and organic soil. In: Proceedings of 2nd international conference on advances in soft soil engineering and technology, Putrajaya, Malaysia, pp 3–35

  • ElMashad M, Hashad A (2013) Improving the strength of sandy silt soils by mixing with cement kiln dust. J Eng Sci Assiut Univ 41(4):185–198

    Google Scholar 

  • Hebib S, Farell ER (2003) Some experiences on the stabilization of Irish peats. Can Geotech J 40:107–120

    Article  Google Scholar 

  • Huat BBK (2004) Organic and peat soils engineering. University Putra Malaysia Press, Serdang

    Google Scholar 

  • Hwang J (2008) Effect of cement treatment on the 1-D consolidation behavior of highly organic soil. Ph.D. dissertation, Lyles School of Civil Engineering, Purdue University, p 433

  • IEEE-IAS Cement Industry Committee (2008) Beneficial use of cement kiln dust. In: IEEE/PCA 50th cement industry technical conference, Miami, USA, pp 19–22

  • Ismaiel HAH (2013) Cement kiln dust chemical stabilization of expansive soil exposed at El-Kawther Quarter, Sohag Region, Egypt. Int J Geosci 4:1416–1424

    Article  Google Scholar 

  • Kalantari B, Huat BBK (2008) Peat soil stabilization using ordinary Portland cement, polypropylene fibres and air curing technique. Electron J Geotech Eng 13(J):1–13

    Google Scholar 

  • Kalantari B, Prasad A (2014) A study of the effect of various curing techniques on the strength of stabilized peat. J Transp Geotech 1(3):119–128

    Article  Google Scholar 

  • Kazemian S, Huat BBK, Prasad A, Barghchi M (2011) Effect of peat media on stabilization of peat by traditional binders. Int J Phys Sci 6(3):476–481

    Google Scholar 

  • Keerthi Y, Divya Kanthi IP, Tejaswi N, Shyam Chamberlink K, Satyanarayana B (2013) Stabilization of clayey soil using cement kiln waste. Int J Adv Struct Geotech Eng 2(2):77–82

    Google Scholar 

  • Kolay PK, Pui MP (2010) Peat stabilization using gypsum and fly ash. Int J Civ Environ Eng 1(2):98–117

    Google Scholar 

  • Kolay PK, Sii HY, Taib SNL (2011) Tropical peat soil stabilization using class F pond ash from coal fired power plant. Int J Civ Environ Eng 3(2):79–83

    Google Scholar 

  • Konsta-Gdoutos MS, Shah SP (2003) Synthesis and properties of novel blended cements based on CKD–Slag blends. Cem Concr Res 33:269–276

    Article  Google Scholar 

  • Kumar B, Puri N (2013) Stabilization of weak pavement subgrades using cement kiln dust. Int J Civ Eng Technol 4(1):26–37

    Google Scholar 

  • MacFarlane IC (1969) Engineering characteristics of peat, Handbook of Muskeg engineering. University of Toronto Press, Toronto

    Book  Google Scholar 

  • Mesri G, Ajlouni M (2007) Engineering properties of fibrous peats. J Geotech Geoenviron Eng 133(7):850–866

    Article  Google Scholar 

  • Moses GK, Saminu A (2012) Cement kiln dust stabilization of compacted black cotton soil. Electron J Geotech Eng 17(F):825–836

    Google Scholar 

  • Okafora FO, Egbeb EA (2013) Potential of cement kiln dust in subgrade improvement. Niger J Technol 32(1):109–116

    Google Scholar 

  • Oriola FOP, Moses G (2011) Compacted black cotton soil treated with cement kiln dust as hydraulic barrier material. Am J Sci Ind Res 2(4):521–530

    Google Scholar 

  • Peethamparana S, Olekb J, Diamondc S (2009) Mechanism of stabilization of Na montmorillonite clay with cement kiln dust. J Cem Concr Res 39:580–589

    Article  Google Scholar 

  • Preston ML (1993) Use of cement kiln dust as an agricultural lime and fertilizer. In: Emerging technologies symposium on cement and concrete in the global environment, Chicago, USA March 10–11, Portland Cement Association, Skokie, Illinois, PCA’s Cement Technical Support Library, DVD020.01©2005

  • Rehan R, Nehdi M (2005) Carbon dioxide emissions and climate change: policy implications for the cement industry. Environ Sci Policy 8:105–114

    Article  Google Scholar 

  • Said J, Taib SNL (2009) Peat stabilization with carbide lime. Int J Civ Environ Eng 1(1):120–132

    Google Scholar 

  • Sariosseiri F, Muhunthan B (2009) Effect of cement treatment on geotechnical properties of some Washington State soils. Eng Geol 104:119–125

    Article  Google Scholar 

  • Sing WL, Hashim R, Ali FH (2009) Unconfined compressive strength of cemented peat. Aust J Basic Appl Sci 3(4):3850–3856

    Google Scholar 

  • Sing WL, Hashim R, Ali FH (2013a) Utilization of sodium bentonite to maximize the filler and pozzolanic effects of stabilized peat. J Eng Geol 152:56–66

    Article  Google Scholar 

  • Sing WL, Hashim R, Ali FH (2013b) Improved strength and reduced permeability of stabilized peat: focus on application of kaolin as a pozzolanic additive. J Constr Build Mater 40:783–792

    Article  Google Scholar 

  • Skels P, Bondars K, Korjakins A (2013) Unconfined compressive strength properties of cement stabilized peat. In: Proceedings of the 4th international conference on civil engineering, part I

  • Terzaghi K, Peck RB, Mesri G (1926) Soil mechanics in engineering practice. Wiley, New York

    Google Scholar 

  • Udoeyo FF, Hyee A (2002) Strength of cement kiln dust concrete. ASCE J Mater Civ Eng 14:524–526

    Article  Google Scholar 

  • Velosa AL, Cachim PB (2009) Hydraulic-lime based concrete: strength development using a pozzolanic addition and different curing conditions. Constr Build Mater 23:2107–2111

    Article  Google Scholar 

  • von Post L (1922) Sveriges geologiska undersoknings torvinventering och nagre av dess hittills vunna resultat. Sr. Mosskulturfo, Tidskr 1:1–27

    Google Scholar 

  • Wang K, Konsta-Gdoutos MS, Shah SP (2002) Hydration, rheology and strength of OPC–CKD–Slag binders. ACI Mater J 99(2):173–179

    Google Scholar 

Download references

Acknowledgements

This paper forms a part of a research program in geoenvironmental engineering being conducted at the Environmental Geotechnique Research Laboratory at the Department of Civil Engineering in Urmia University, Iran. The funding to this research was made possible by the award of research grant to K. Badv from Urmia University of Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Badv.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badv, K., Hoseinpour Lonbar, J. Treatment of Urmia Peat by Cement Kiln Dust. Iran J Sci Technol Trans Civ Eng 42, 451–459 (2018). https://doi.org/10.1007/s40996-018-0112-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40996-018-0112-5

Keywords

Navigation