Pseudomonas aeruginosa Growth Inhibitor, PAGI264: A Natural Product from a Newly Isolated Marine Bacterium, Bacillus sp. Strain REB264

Abstract

Increasing concerns about the emergence of antibiotic-resistant bacteria have drawn much attention for research efforts to introduce new types of antibacterial compounds among scientists. In the present report, 24 bacterial strains isolated from the coastal areas of the Persian Gulf in Iran were investigated in order to assess their potentials to produce antibacterial metabolites. Among these, the crude extract from the isolate REB264 showed promising inhibition activity on the growth of two pathogenic bacteria, Pseudomonas aeruginosa and Staphylococcus aureus. Molecular identification via sequencing of the amplified 16S rDNA gene of the strain REB264 revealed that the bacterium belonging to the genus Bacillus and was tentatively named Bacillus sp. REB264, while the sequence was deposited in GenBank database, NCBI. Optimization of the carbon and nitrogen sources of the strain REB264 culture media determined that 743 mg/l active extract was achieved when using 1% glycerol and 0.5% yeast extract as carbon and nitrogen sources, respectively. Crude extract purification to obtain the antibacterial metabolite was performed in three steps using fractionation in organic and aqueous solvents, silica gel 60 column chromatography and LH-20 gel filtration with the yield of 80%. The purified compound exhibited inhibitory effect on P. aeruginosa growth at minimum inhibitory concentration (MIC) of 15 µg/ml, while lacking antibacterial effect on S. aureus. The P. aeruginosa growth inhibitor 264 (PAGI264) compound was further purified using reversed-phase high-performance liquid chromatography (C18-HPLC) up to 95% and the structural analysis by FTIR and H1-NMR confirmed that PAGI264 is composed of alcoholic, carbonyl and phenolic functional groups. Moreover, MS data in positive mode showed that the molecular weight of the compound is 761.74 Da. Lack of toxicity to MCF-7 cell line up to 500 µg/ml and lack of the hemolytic effect on red blood cells showed that the present natural product, PAGI264, has capability to use as a lead or drug in the future.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Andryukov B, Mikhailov V, Besednova N (2019) The biotechnological potential of secondary metabolites from marine bacteria. J Mar Sci Eng 7:176. https://doi.org/10.3390/jmse7060176

    Article  Google Scholar 

  2. Bassetti M, Vena A, Croxatto A, Righi E, Guery B (2018) How to manage Pseudomonas aeruginosa infections. Drugs Context 7:212527. https://doi.org/10.7573/dic.212527

    Article  Google Scholar 

  3. Caulier S, Nannan C, Gillis A, Licciardi F, Bragard C, Mahillon J (2019) Overview of the antimicrobial compounds produced by members of the Bacillus subtilis group. Front Microbiol 10:302. https://doi.org/10.3389/fmicb.2019.00302

    Article  Google Scholar 

  4. Chakraborty K, Thilakan B, Chakraborty RD, Raola VK, Joy M (2017) O-Heterocyclic derivatives with antibacterial properties from marine bacterium Bacillus subtilis associated with seaweed, Sargassum myriocystum. Appl Microbiol Biotechnol 101:569–583. https://doi.org/10.1007/s00253-016-7810-3

    Article  Google Scholar 

  5. Chakraborty K, Thilakan B, Kizhakkekalam V (2018) Antibacterial aryl-crowned polyketide from Bacillus subtilis associated with seaweed Anthophycus longifolius. J Appl Microbiol 124:108–125. https://doi.org/10.1111/jam.13627

    Article  Google Scholar 

  6. Cockerill F, Patel J, Alder J, Bradford P, Dudley M, Eliopoulos G (2013) Performance standards for antimicrobial susceptibility testing: twenty-third informational supplement; M100-S23. http://www.techstreet.com, under license from Clinical and Laboratory Standards Institute (CLSI)

  7. Elaiyaraja V, Latha MH, Devi CS (2018) Optimization and production of anti-inflammatory and anti-diabetic metabolites from marine Streptomyces sp. VITJS8. Res J Pharm Technol 11:2866–2868. https://doi.org/10.5958/0974-360X.2018.00528.0

    Article  Google Scholar 

  8. Fleischmann C et al (2016) Assessment of global incidence and mortality of hospital-treated sepsis. Current estimates and limitations. Am J Respir Crit Care Med 193:259–272. https://doi.org/10.1164/rccm.201504-0781OC

    Article  Google Scholar 

  9. Freitas-Silva J, Silva-Oliveira T, Muricy G, Laport MS (2020) Bacillus strains associated to homoscleromorpha sponges are highly active against multidrug resistant bacteria. Curr Microbiol 77:807–815. https://doi.org/10.1007/s00284-019-01870-x

    Article  Google Scholar 

  10. Hou CT (2008) New bioactive fatty acids. Asia Pac J Clin Nutr 17(Suppl 1):192–195

    Google Scholar 

  11. Hudzicki J (2009) Kirby–Bauer disk diffusion susceptibility test protocol. http://www.microbelibrary.org/component/resource/laboratory-test/3189-kirby-bauer-disk-diffusion-susceptibility-test-protocol. Accessed 241114

  12. Humphreys G, Fleck F (2016) United Nations meeting on antimicrobial resistance. World Health Organ Bull World Health Organ 94:638. https://doi.org/10.2471/BLT.16.020916

    Article  Google Scholar 

  13. Jafarzade M, Yahya NA, Shayesteh F, Usup G, Ahmad A (2013) Influence of culture conditions and medium composition on the production of antibacterial compounds by marine Serratia sp. WPRA3. J Microbiol 51:373–379. https://doi.org/10.1007/s12275-013-2440-2

    Article  Google Scholar 

  14. Jaruchoktaweechai C, Suwanborirux K, Tanasupawatt S, Kittakoop P, Menasveta P (2000) New macrolactins from a marine Bacillus sp. Sc026. J Nat Prod 63:984–986. https://doi.org/10.1021/np990605c

    Article  Google Scholar 

  15. Jeyanthi V, Anbu P, Vairamani M, Velusamy P (2016) Isolation of hydroquinone (benzene-1,4-diol) metabolite from halotolerant Bacillus methylotrophicus MHC10 and its inhibitory activity towards bacterial pathogens. Bioprocess Biosyst Eng 39:429–439. https://doi.org/10.1007/s00449-015-1526-0

    Article  Google Scholar 

  16. Kiranmayi MU, Sudhakar P, Sreenivasulu K, Vijayalakshmi M (2011) Optimization of culturing conditions for improved production of bioactive metabolites by Pseudonocardia sp. VUK-10. Mycobiology 39:174–181. https://doi.org/10.5941/MYCO.2011.39.3.174

    Article  Google Scholar 

  17. Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  Google Scholar 

  18. Ling LL et al (2015) A new antibiotic kills pathogens without detectable resistance. Nature 517:455–459. https://doi.org/10.1038/nature14098

    Article  Google Scholar 

  19. Liu S-W et al (2013) PJS, a novel isocoumarin with hexahydropyrimidine ring from Bacillus subtilis PJS. J Antibiot 66:281–284. https://doi.org/10.1038/ja.2012.118

    Article  Google Scholar 

  20. Moore T, Globa L, Barbaree J, Vodyanoy V, Sorokulova I (2013) Antagonistic activity of Bacillus bacteria against food-borne pathogens. J Probiot Health 1:110. https://doi.org/10.4172/2329-8901.1000110

    Article  Google Scholar 

  21. Moradali MF, Ghods S, Rehm BH (2017) Pseudomonas aeruginosa lifestyle: a paradigm for adaptation, survival, and persistence. Front Cell Infect Microbiol 7:39. https://doi.org/10.3389/fcimb.2017.00039

    Article  Google Scholar 

  22. Mulcahy LR, Isabella VM, Lewis K (2014) Pseudomonas aeruginosa biofilms in disease. Microb Ecol 68:1–12. https://doi.org/10.1007/s00248-013-0297-x

    Article  Google Scholar 

  23. Padilla G, Hindle Z, Callis R, Corner A, Ludovice M, Liras P, Baumberg S (1991) The relationship between primary and secondary metabolism in Streptomycetes. In: Baumberg S, Krügel H, Noack D (eds) Genetics and product formation in streptomyces, vol 55. Springer, Boston, pp 35–45

    Google Scholar 

  24. Pan S, Chen G, Wu R, Cao X, Liang Z (2019) Non-sterile submerged fermentation of fibrinolytic enzyme by marine Bacillus subtilis harboring antibacterial activity with starvation strategy. Front Microbiol 10:1025. https://doi.org/10.3389/fmicb.2019.01025

    Article  Google Scholar 

  25. Pang Z, Raudonis R, Glick BR, Lin T-J, Cheng Z (2019) Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv 37:177–192. https://doi.org/10.1016/j.biotechadv.2018.11.013

    Article  Google Scholar 

  26. Paterson DL, Bonomo RA (2019) Multidrug-resistant Gram-negative pathogens: the urgent need for ‘Old’ polymyxins. Adv Exp Med Biol 1145:9–13. https://doi.org/10.1007/978-3-030-16373-0_2

    Article  Google Scholar 

  27. Peleg AY, Hooper DC (2010) Hospital-acquired infections due to Gram-negative bacteria. N Engl J Med 362:1804–1813. https://doi.org/10.1056/NEJMra0904124

    Article  Google Scholar 

  28. Pournejati R, Gust R, Karbalaei-Heidari HR (2019) An aminoglycoside antibacterial substance, S-137-R, produced by newly isolated Bacillus velezensis strain RP137 from the Persian Gulf. Curr Microbiol. https://doi.org/10.1007/s00284-019-01715-7

    Article  Google Scholar 

  29. Romano G, Costantini M, Sansone C, Lauritano C, Ruocco N, Ianora A (2017) Marine microorganisms as a promising and sustainable source of bioactive molecules. Mar Environ Res 128:58–69. https://doi.org/10.1016/j.marenvres.2016.05.002

    Article  Google Scholar 

  30. Sanchez S, Demain AL (2002) Metabolic regulation of fermentation processes. Enzyme Microb Technol 31:895–906. https://doi.org/10.1016/S0141-0229(02)00172-2

    Article  Google Scholar 

  31. Sánchez S et al (2010) Carbon source regulation of antibiotic production. J Antibiot 63:442–459. https://doi.org/10.1038/ja.2010.78

    Article  Google Scholar 

  32. Sansinenea E, Ortiz A (2011) Secondary metabolites of soil Bacillus spp. Biotechnol Lett 33:1523–1538. https://doi.org/10.1007/s10529-011-0617-5

    Article  Google Scholar 

  33. Silby MW, Winstanley C, Godfrey SA, Levy SB, Jackson RW (2011) Pseudomonas genomes: diverse and adaptable. FEMS Microbiol Rev 35:652–680. https://doi.org/10.1111/j.1574-6976.2011.00269.x

    Article  Google Scholar 

  34. Sumi CD, Yang BW, Yeo I-C, Hahm YT (2015) Antimicrobial peptides of the genus Bacillus: a new era for antibiotics. Can J Microbiol 61:93–103. https://doi.org/10.1139/cjm-2014-0613

    Article  Google Scholar 

  35. Thirumurugan D, Cholarajan A, Raja SS, Vijayakumar R (2018) An introductory chapter: secondary metabolites. Second Metab Sources Appl. https://doi.org/10.5772/intechopen.79766

    Article  Google Scholar 

  36. Velho-Pereira S, Kamat N (2016) Optimization of an anti Staphylococcus antibiotic produced by tropical soil dwelling Streptomyces parvulus. Avail SSRN 2986073. https://doi.org/10.1101/060392

    Article  Google Scholar 

  37. Vranakis I, Goniotakis I, Psaroulaki A, Sandalakis V, Tselentis Y, Gevaert K, Tsiotis G (2014) Proteome studies of bacterial antibiotic resistance mechanisms. J Proteom 97:88–99. https://doi.org/10.1016/j.jprot.2013.10.027

    Article  Google Scholar 

  38. Wiegand I, Hilpert K, Hancock RE (2008) Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 3:163–175. https://doi.org/10.1038/nprot.2007.521

    Article  Google Scholar 

  39. Zhao H et al (2017) Biological activity of lipopeptides from Bacillus. Appl Microbiol Biotechnol 101:5951–5960. https://doi.org/10.1007/s00253-017-8396-0

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the research affairs of Shiraz University, Shiraz, Iran under Grant Code of 97GCU2M143077.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hamid Reza Karbalaei-Heidari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1186 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ebrahimi, R., Pournejati, R. & Karbalaei-Heidari, H.R. Pseudomonas aeruginosa Growth Inhibitor, PAGI264: A Natural Product from a Newly Isolated Marine Bacterium, Bacillus sp. Strain REB264. Iran J Sci Technol Trans Sci (2021). https://doi.org/10.1007/s40995-021-01107-2

Download citation

Keywords

  • Antimicrobial agents
  • Pseudomonas aeruginosa
  • Natural products
  • Marine Bacillus