An Efficient Method for Fitting Gaussian Functions

Abstract

We propose a simple differential method and a refined Roonizi’s method to fit single Gaussian function and integro-differential method to fit two Gaussian functions. The conventional method for fitting Gaussian functions is an iterative procedure. The proposed methods, being linear in estimated parameters, alleviate the problem of critical initial guess needed in iterative procedures. The experimental results confirm the methods perform better or in a competitive manner compared to Caruana’s, Guo’s, Roonizi’s and FAS algorithm for single Gaussian case. It is found that the proposed integro-differential method to fit two Gaussian functions is stable and identifies Gaussian parameters in an efficient way.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Al-Nahhal I, Dobre OA, Basar E, Moloney C, Ikki S (2019) A fast, accurate, and separable method for fitting a gaussian function [tips tricks]. IEEE Signal Process Mag 36(6):157–163. https://doi.org/10.1109/MSP.2019.2927685

    Article  Google Scholar 

  2. Bobroff N (1986) Position measurement with a resolution and noise-limited instrument. Rev Scientific Instrum 57(6):1152–1157. https://doi.org/10.1063/1.1138619

    Article  Google Scholar 

  3. Caruana RA, Searle RB, Heller T, Shupack SI (1986) Fast algorithm for the resolution of spectra. Anal Chem 58(6):1162–1167. https://doi.org/10.1021/ac00297a041

    Article  Google Scholar 

  4. Guo H (2011) A simple algorithm for fitting a gaussian function [dsp tips and tricks]. IEEE Signal Process Mag 28(5):134–137. https://doi.org/10.1109/MSP.2011.941846

    Article  Google Scholar 

  5. Ireland J (2005) Precision limits to emission-line profile measuring experiments. Astrophys J 620(2):1132–1139. https://doi.org/10.1086/427230

    Article  Google Scholar 

  6. Kheirati Roonizi E (2013) A new algorithm for fitting a gaussian function riding on the polynomial background. IEEE Signal Process Lett 20(11):1062–1065. https://doi.org/10.1109/LSP.2013.2280577

    Article  Google Scholar 

  7. Lenz DD, Ayres TR (1992) Errors associated with fitting gaussian profiles to noisy emission-line spectra. Publ Astron Soc Pac 104:1104. https://doi.org/10.1086/133096

    Article  Google Scholar 

  8. Oppenheim AV, Wilsky AS, Young I (1983) Signals and systems. Prentice-Hall, New Jersey

    Google Scholar 

  9. Tang Q, Chen Z, Ward R, Elgendi M (2020) Synthetic photoplethysmogram generation using two gaussian functions. Scientific Reports 10(1):13883. https://doi.org/10.1038/s41598-020-69076-x

    Article  Google Scholar 

  10. Winick KA (1986) Cramér-rao lower bounds on the performance of charge-coupled-device optical position estimators. J Opt Soc Am A 3(11):1809–1815. https://doi.org/10.1364/JOSAA.3.001809

    Article  Google Scholar 

Download references

Acknowledgements

The authors are expressing their sincere gratitude to the anonymous reviewers for their comments. This research was funded by NRF with 2017R1E1A1A03070061.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bataa Lkhagvasuren.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kwak, M., Lkhagvasuren, B. & Sun, X. An Efficient Method for Fitting Gaussian Functions. Iran J Sci Technol Trans Sci (2021). https://doi.org/10.1007/s40995-021-01079-3

Download citation

Keywords

  • Gaussian functions
  • Nonlinear fitting
  • Parameter estimation