Skip to main content
Log in

Cytogenetic and Micro-Morphological Studies on Several Accessions of Some Lepidium L. Species in Iran

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions A: Science Aims and scope Submit manuscript

Abstract

We investigated genome size and stomatal characteristics of guard cells of several Iranian accessions belonging to three Lepidium species. Average 2C DNA of L. sativum and L. latifolium accessions was estimated at 1.23 and 2.07 pg, respectively, and all accessions were diploid. 2C value of L. draba accessions was in the range of 1.11–2.29 pg. Results of cluster analysis on the basis of nuclear 2C DNA showed that L. draba accessions had a relationship with geographic origin, unlike L. sativum and L. latifolium. Stomatal density and chloroplast number of guard cells differed among accessions of L. draba, ranging 29.2–52.7 stomata/mm2 and 9.3–16.9, respectively. In L. draba, a negative and positive correlation observed between stomatal density and chloroplast number of guard cells with nuclear DNA content, respectively. There is a substantial variation in stomatal characteristics among accessions that could be useful for the selection and breeding of Lepidium for adaptation to different climates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Al-Shehbaz IA (1984) The tribes of Cruciferae (Brassicaceae) in the southeastern United States. J Arnold Arboretum 65(3):343–373

    Google Scholar 

  • Al-Shehbaz IA, Beilstein MA, Kellogg EA (2006) Systematics and phylogeny of the Brassicaceae (Cruciferae): an overview. Plant Syst Evol 259:89–120

    Google Scholar 

  • Aqafarini A, Lotfi M, Norouzi M, Karimzadeh Gh (2019) Induction of tetraploidy in garden cress: morphological and cytological changes. Plant Cell Tiss Org Cult 137:627–635

    Google Scholar 

  • Bailey CD, Koch MA, Mayer M, Mummenhoff K, O’Kane SL Jr et al (2006) Toward a global phylogeny of the Brassicaceae. Mol Biol Evol 23(11):2142–2160

    Google Scholar 

  • Beaulieu JM, Leitch IJ, Patel S, Pendharkar A, Knight CA (2008) Genome size is a strong predictor of cell size and stomatal density in angiosperms. New Phytol 179:975–986

    Google Scholar 

  • Bennett MD, Leitch IJ (2005) Plant genome size research: a field in focus. Ann Bot 95(1):1–6

    Google Scholar 

  • Bertolino LT, Caine RS, Gray JE (2019) Impact of stomatal density and morphology on water– use efficiency in a changing world. Front Plant Sci. https://doi.org/10.3389/fpls.2019.00225

    Article  Google Scholar 

  • Bourge M, Brown SC, Siljak-Yakovlev S (2018) Flow cytometry as tool in plant sciences, with emphasis on genome size and ploidy level assessment. Genet Appl. https://doi.org/10.31383/ga.vol2iss2pp1-12

    Article  Google Scholar 

  • Camargo MAB, Marenco RA (2011) Density, size and distribution of stomata in 35 rainforest tree species in Central Amazonia. Acta Amazonica 41(2):205–212

    Google Scholar 

  • Corneillie S, De Storme N, Van Acker R, Fangel JU, De Bruyne M et al (2019) Polyploidy affects plant growth and alters cell wall composition. Plant Physiol 179:74–87

    Google Scholar 

  • Desta ZA, Kolano B, Shamim Z, Armstrong SJ, Rewers M et al (2019) Field cress genome mapping: integrating linkage and comparative maps with cytogenetic analysis for rDNA carrying chromosomes. Sci Rep. https://doi.org/10.1038/s41598-019-53320-0

    Article  Google Scholar 

  • Dunn J, Hunt L, Afsharinafar M, Al Meselmani M, Mitchell A et al (2019) Reduced stomatal density in bread wheat leads to increased water-use efficiency. J Exp Bot 70(18):4737–4748

    Google Scholar 

  • Francis A, Warwick SI (2008) The biology of Canadian weeds. 3. Lepidium draba L., L. chalepense L., L. appelianum Al–Shehbaz (updated). Can J Plant Sci 88(2):379–401

    Google Scholar 

  • Fujiwara MT, Sanjaya A, Itoh RD (2019) Arabidopsis thaliana leaf epidermal guard cells: a model for studying chloroplast proliferation and partitioning in plants. Front Plant Sci. https://doi.org/10.3389/fpls.2019.01403

    Article  Google Scholar 

  • Gaskin JF, Zhang DY, Bon MC (2005) Invasion of Lepidium draba (Brassicaceae) in the western United States: distributions and origins of chloroplast DNA haplotypes. Mol Eco 14:2331–2341

    Google Scholar 

  • Ghaffari SM, Kelich K (2006) New or rare chromosome counts of some angiosperm species from Iran II. Iran J Bot 12(1):81–86

    Google Scholar 

  • Gill BS, Friebe B, Endo TR (1991) Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat (Triticum aestivum). Genome 34:830–839

    Google Scholar 

  • Hong T, Lin H, He D (2018) Characteristics and correlations of leaf stomata in different Aleurites montana provenances. PLoS ONE. https://doi.org/10.1371/journal.pone.0208899

    Article  Google Scholar 

  • Ilyinska AP (2014) Lepidium s. str. (Brassicaceae) in the flora of Ukraine. Biodiv Res Conserv 35:25–29

    Google Scholar 

  • Jellen EN (2016) C-banding of plant chromosomes. In: Kianian SF, Kianian PMA (eds) Plant cytogenetics: methods in molecular biology, Vol. 1429, pp 1–5. 1st edn. Humana Press, New York,

  • Johnston JS, Pepper AE, Hall AE, Chen ZJ, Hodnett G et al (2005) Evolution of genome size in Brassicaceae. Ann Bot 95(1):229–235

    Google Scholar 

  • Kaur T, Hussain K, Koul S, Vishwakarma R, Vyas D (2013) Evaluation of nutritional and antioxidant status of Lepidium latifolium L in: a novel phytofood from Ladakh. PLoS ONE. https://doi.org/10.1371/journal.pone.0069112.g001

    Article  Google Scholar 

  • Lichvar RW (2014) Genomic size and ploidy level patterns of Intermountain West Lepidium determined using flow cytometry. Western N Am Nat 74(4):369–377

    Google Scholar 

  • Loureiro J, Rodriguez E, Doležel J, Santos C (2007) Two new nuclear isolation buffers for plant DNA flow cytometry: a test with 37 species. Ann Bot 100:875–888

    Google Scholar 

  • Lysak MA (2009) Comparative cytogenetics of wild Crucifers (Brassicaceae). In: Gupta SK (ed) Biology and Breeding of Crucifers, vol 1. CRC Press, Boca Raton, pp 175–205

    Google Scholar 

  • Marasek A, Hitoshia M, Keiichi O (2006) The origin of Darwin hybrid tulips analyzed by flow cytometry, karyotype analyses and genomic in situ hybridization. Euphytica 151:279–290

    Google Scholar 

  • Miller GK, Young JA, Evans RA (1986) Germination of seeds of perennial pepperweed (Lepidium Latifolium). Weed Sci 34(2):252–255

    Google Scholar 

  • Monakhos SG, Nguen ML, Bezbozhnaya AV, Monakhos GF (2014) A relationship between ploidy level and the number of chloroplasts in stomatal guard cells in diploid and amphidiploid Brassica species. Agri Biol 5:44–54

    Google Scholar 

  • Ohsumi A, Kanemura T, Homma K, Horie T, Shiraiwa T (2007) Genotypic variation of stomatal conductance in relation to stomatal density and length in rice (Oryza sativa L.). Plant Prod Sci 10(3):322–328

    Google Scholar 

  • Omidbaigi R, Mirzaee M, Hassani ME, Sedghi Moghadam M (2010) Induction and identification of polyploidy in basil (Ocimum basilicum L.) medicinal plant by colchicine treatment. Int J Plant Prod 4(2):87–98

    Google Scholar 

  • Parida AK, Veerabathini SK, Kumari A, Agarwal PK (2016) Physiological, anatomical and metabolic implications of salt tolerance in the halophyte Salvadora persica under hydroponic culture condition. Front Plant Sci. https://doi.org/10.3389/fpls.2016.00351

    Article  Google Scholar 

  • Paule J, Gregor T, Schmidt M, Gerstner EM, Dersch G et al (2017) Chromosome numbers of the flora of Germany– a new online database of georeferenced chromosome counts and flow cytometric ploidy estimates. Plant Syst Evol 303:1–7

    Google Scholar 

  • Pirasteh‐Anosheh H, Saed‐Moucheshi A, Pakniyat H, Pessarakli M (2016) Stomatal responses to drought stress. In: Ahmad P (ed) Water stress and crop plants: a sustainable approach, Vol 1, pp 24–40. 1st edn. John Wiley and Sons, New Jersy

  • Rezaie Osalou R, Daneshvar S, Rouyandezagh B, Alizadeh CE, Sevimay CS (2013) A comparison of ice cold water pretreatment and α–bromonaphthalene cytogenetic method for identification of Papaver species. Sci World J. https://doi.org/10.1155/2013/608650

    Article  Google Scholar 

  • Roughani A, Miri SM, Hassandokht MR, Moradi P, Abdossi V (2018a) Agro–morphological study on several accessions of garden cress (Lepidium sativum– Brassiaceae) in Iran. Pak J Bot 50(2):655–660

    Google Scholar 

  • Roughani A, Miri SM, Hassandokht MR, Moradi P, Abdossi V (2018b) Morphological variation of some Lepidium draba and L. latifolium populations. Taiwania 63(1):41–48

    Google Scholar 

  • Ruggiero A, Punzo P, Landi S, Costa A, Van Oosten MJ, Grillo S (2017) Improving plant water use efficiency through molecular genetics. Hort. https://doi.org/10.3390/horticulturae3020031

    Article  Google Scholar 

  • Salma U, Kundu S, Mandal N (2017) Artificial polyploidy in medicinal plants: advancement in the last two decades and impending prospects. J Crop Sci Biotechnol 20:9–19

    Google Scholar 

  • Šantrůček J, Vráblová M, Šimková M, Hronková M, Drtinová M et al (2014) Stomatal and pavement cell density linked to leaf internal CO2 concentration. Ann Bot 114:191–202

    Google Scholar 

  • Sat IG, Yildirim E, Turan M, Demirbas M (2013) Antioxidant and nutritional characteristics of garden cress (Lepidium sativum). Acta Sci Polonorum-Hort Cultus 12:173–179

    Google Scholar 

  • Shabala S (2013) Learning from halophytes: Physiological basis and strategies to improve abiotic stress tolerance in crops. Ann Bot 112:1209–1221

    Google Scholar 

  • Shahinnia F, Le Roy J, Laborde B, Sznajder B, Kalambettu P et al (2016) Genetic association of stomatal traits and yield in wheat grown in low rainfall environments. BMC Plant Biol. https://doi.org/10.1186/s12870-016-0838-9

    Article  Google Scholar 

  • Shahrokhi SR, Ghanimatdan M, Akbari Bazm M, Karimi I (2014) Survey of indigenous medicinal plants and traditional foods in the Lorestan province, west Iran. Bull Env Pharmacol Life Sci 3:45–49

    Google Scholar 

  • Silvia MC, Vieira MLC, Mondin M, Aguiar-Perecin ML (2005) Comparative karyotype analysis of three Passiflora L. species and cytogenetic characterization of somatic hybrids. Caryologia 58(3):220–228

    Google Scholar 

  • Simora-Stoilova L, Vassileva V, Feller U (2016) Selection and breeding of suitable crop genotypes for drought and heat periods in a changing climate: Which morphological and physiological properties should be considered? Agri. https://doi.org/10.3390/agriculture6020026

    Article  Google Scholar 

  • Singh RJ (2003) Plant Cytogenetics. CRC Press, Boca Raton

    Google Scholar 

  • Španiel S, Kempa M, Salmero′n-Sa′nchez E, Fuertes-Aguilar J, Mota JF et al (2015) AlyBase: database of names, chromosome numbers, and ploidy levels of Alysseae (Brassicaceae), with a new generic concept of the tribe. Plant Syst Evol 301(10):2463–2491

    Google Scholar 

  • Tanaka Y, Sugano SS, Shimada T, Hara-Nishimura I (2013) Enhancement of leaf photosynthetic capacity through increased stomatal density in Arabidopsis. New Phytol 198:757–764

    Google Scholar 

  • Veerabhadrappa SK, Chandrappa PR, Roodmal SY, Shetty SJ, Gunjiganur MS et al (2016) Karyotyping: current perspectives in diagnosis of chromosomal disorders. Sifa Med J 3:35–40

    Google Scholar 

  • Wang Y, Chen X, Xiang CB (2007) Stomatal density and bio-water saving. J Integr Plant Biol 49(10):1435–1444

    Google Scholar 

  • Wang R, Yu G, He N, Wang Q, Xia F et al (2014) Elevation– related variation in leaf stomatal traits as a function of plant functional type: evidence from Changbai Mountain, China. PLoS ONE. https://doi.org/10.1371/journal.pone.0115395

    Article  Google Scholar 

  • Xu Z, Xie B, Wu T, Xin X, Man L et al (2016) Karyotyping and identifying all of the chromosomes of allopolyploid Brassica juncea using multicolor FISH. Crop J 4(4):266–274

    Google Scholar 

  • Yan J, Zhang J, Sun K, Chang D, Bai S et al (2016) Ploidy level and DNA content of Erianthus arundinaceus as determined by flow cytometry and the association with biological characteristics. PLoS ONE. https://doi.org/10.1371/journal.pone.0151948

    Article  Google Scholar 

  • Yang M, Yang Q, Fu T, Zhou Y (2011) Overexpression of the Brassica napus BnLAS gene in Arabidopsis affects plant development and increases drought tolerance. Plant Cell Rep 30(3):373–388

    Google Scholar 

  • Yuan SX, Liu YM, Fang ZY, Yang LM, Zhuang M et al (2009) Study on the relationship between the ploidy level of microspore– derived plants and the number of chloroplast in stomatal guard cells in Brassica oleracea. Agric Sci China 8(8):939–946

    Google Scholar 

  • Zhang L, Niu H, Wang S, Zhu X, Luo C et al (2012) Gene or environment? Species–specific control of stomatal density and length. Eco Evol 2(5):1065–1070

    Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seied Mehdi Miri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roughani, A., Miri, S.M., Hassandokht, M.R. et al. Cytogenetic and Micro-Morphological Studies on Several Accessions of Some Lepidium L. Species in Iran. Iran J Sci Technol Trans Sci 45, 417–426 (2021). https://doi.org/10.1007/s40995-020-01035-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40995-020-01035-7

Keywords

Navigation