Gamma-Ray Attenuation Study for the Soils of Bursa, Turkey, in the Energy Range 59.5–1332.5 keV

Abstract

In this study, the gamma radiation attenuation was experimentally investigated for soil samples with different texture collected from Bursa Province, Turkey. Firstly, physical and chemical properties (e.g., density, particle size distribution, lime content, organic matter and chemical composition) of these soils were determined by several methods. The transmission measurements of soils performed by using Am-241, Cs-137, Co-60 and Na-22 sources and 2 × 2 inch NaI(Tl) scintillation detector were used to calculate shielding parameters, mass attenuation coefficient, half value layer and tenth value layer values, of these samples in form of pressed powder pellets. The values of these important parameters have been found to vary with gamma-ray energy and chemical composition of the studied soil samples. For instance, the mass attenuation coefficients were decreased with increasing gamma-ray energies and, with the increase in contribution of MgO and Na components, caused better absorption. The effect of compression pressure on attenuation coefficient was also investigated, and better absorption was observed for the sample pressed by high value of press force.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Akkurt İ, Emikönel S, Akarslan F, Günoğlu K, Kilinçarslan Ş, Üncü İS (2015) Barite effect on radiation shielding properties of cotton–polyester fabric. Acta Phys Pol A 128:53–54. https://doi.org/10.12693/APhysPolA.128.B-53

    Article  Google Scholar 

  2. Al-Sarray E, Akkurt İ, Günoğlu K, Evcin A, Bezir NÇ (2017) Radiation shielding properties of some composite panel. Acta Phys Pol A 132:490–492. https://doi.org/10.12693/APhysPolA.132.490

    Article  Google Scholar 

  3. Appoloni CR, Pottker WE (2004) Non-destructive porosity profile measurement of amorphous materials by gamma-ray transmission. Appl Radiat Isot 61:1133–1138. https://doi.org/10.1016/j.apradiso.2003.12.013

    Article  Google Scholar 

  4. Bacchi OOS, Reichardt K, Oliveira JCM, Nielsen DR (1998) Gamma-ray beam attenuation as an auxiliary technique for the evaluation of soil water retention curve. Sci Agr 55:499–502. https://doi.org/10.1590/S0103-90161998000300019

    Article  Google Scholar 

  5. Beamish D (2013) Gamma ray attenuation in the soils of Northern Ireland, with special reference to peat. J Environ Radioact 115:13–27. https://doi.org/10.1016/j.jenvrad.2012.05.031

    Article  Google Scholar 

  6. Blake GR, Hartge KH (1986) Particle density. In: Klute A (ed) Methods of soil analysis. Part 1. Physical and mineralogical methods. Agronomy no. 9, 2nd edn. ASA-SSSA Inc., Madison, pp 377–382

    Google Scholar 

  7. Bradley DA, Chong CS, Ghose AM (1986) Photon absorptiometry of hydrocarbons. Int J Radiat Appl Instrum Part A Appl Radiat Isot 37:1195–1198. https://doi.org/10.1016/0883-2889(86)90005-5

    Article  Google Scholar 

  8. Conner AL, Atwater HF, Plassmann E, McCrary JH (1970) Gamma-ray attenuation-coefficient measurements. Phys Rev A 1:539–544. https://doi.org/10.1103/PhysRevA.1.539

    Article  Google Scholar 

  9. Costa JC, Borges JAR, Pires LF, Arthur RCJ, Bacchi OOS (2014) Soil mass attenuation coefficient: analysis and evaluation. Ann Nucl Energy 64:206–211. https://doi.org/10.1016/j.anucene.2013.10.006

    Article  Google Scholar 

  10. Davisson CM, Evans RD (1951) Measurements of gamma ray absorption coefficients. Phys Rev 81:404–411. https://doi.org/10.1103/PhysRev.81.404

    Article  Google Scholar 

  11. Demir E, Tugrul AB, Sonmez S, Ovecoglu L, Buyuk B, Yilmaz O (2017) Assessment on gamma attenuation behavior of W–VC–C and W–VC–TiC–C composites for Co-60 radioisotope. Acta Phys Pol A 132:830–832. https://doi.org/10.12693/APhysPolA.132.830

    Article  Google Scholar 

  12. El-Kateb AH, Abdul-Hamid AS (1991) Photon attenuation coefficient study of some materials containing hydrogen, carbon and oxygen. Int J Radiat Appl Instrum Part A Appl Radiat Isot 42:303–307. https://doi.org/10.1016/0883-2889(91)90093-G

    Article  Google Scholar 

  13. Gee GW, Bauder JW (1986) Particle size analysis. In: Klute A (ed) Methods of soil analysis. Part 1. Physical and mineralogical methods. Agronomy no. 9, 2nd edn. ASA-SSSA Inc., Madison, pp 383–411

    Google Scholar 

  14. Goswami B, Chaudhuri N (1973) Measurements of gamma-ray attenuation coefficients. Phys Rev A 7:1912–1916. https://doi.org/10.1103/PhysRevA.7.1912

    Article  Google Scholar 

  15. Kaplan I (1963) Nuclear physics. Addison-Wesley Pub. Co., Cambridge

    Google Scholar 

  16. Mann KS, Heer MS, Rani A (2015) Effect of low-Z absorber’s thickness on gamma-ray shielding parameters. Nucl Instrum Methods Phys Res A 797:19–28. https://doi.org/10.1016/j.nima.2015.06.013

    Article  Google Scholar 

  17. Manohara SR, Hanagodimath SM, Gerward L (2008) Energy dependence of effective atomic numbers for photon energy absorption and photon interaction: studies of some biological molecules in the energy range 1 keV–20 MeV. Med Phys 35:388–402. https://doi.org/10.1118/1.2815936

    Article  Google Scholar 

  18. Mavi B, Oner F, Akkurt I (2015) Determination of gamma-ray attenuation coefficients at different energies in Amasya marbles. Acta Phys Pol A 128:395–396. https://doi.org/10.12693/APhysPolA.128.B-395

    Article  Google Scholar 

  19. McLean EO (1982) Soil pH and lime requirement. In: Page AL (ed) Methods of soil analysis. Part 2. Agronomy no. 9, 2nd edn. ASA Inc., Madison, pp 199–224

    Google Scholar 

  20. Medhat ME (2012) Application of gamma-ray transmission method for investigation of the properties of cultivated soil. Ann Nucl Energy 40:53–598. https://doi.org/10.1016/j.anucene.2011.10.010

    Article  Google Scholar 

  21. Nelson DW, Sommers LE (1982) Total carbon, organic carbon, and organic matter. In: Page AL (ed) Methods of soil analysis. Part 2. Agronomy monograph no. 9, 2nd edn. ASA Inc., Madison, pp 539–579

    Google Scholar 

  22. Özavcı S, Çetin B (2016) Determination of radiation attenuation coefficients in concretes containing different wastes. Acta Phys Pol A 130:316–317. https://doi.org/10.12693/APhysPolA.130.316

    Article  Google Scholar 

  23. Perumallu A, Nageswara Rao AS, Krishna Rao G (1985) Z-dependence of photon interactions in multi-element materials. Physica B + C 132:388–394. https://doi.org/10.1016/0378-4363(85)90125-1

    Article  Google Scholar 

  24. Plant and Soil Sciences eLibrary. http://passel.unl.edu/pages/informationmodule.php?idinformationmodule=1130447039&topicorder=2&maxto=10. Accessed 11 Nov 2017

  25. Sayyed MI, AlZaatreh MY, Dong MG, Zaid MHM, Matori KA, Tekin HO (2017) A comprehensive study of the energy absorption and exposure buildup factors of different bricks for gamma-rays shielding. Results Phys 7:2528–2533. https://doi.org/10.1016/j.rinp.2017.07.028

    Article  Google Scholar 

  26. Singh K, Kaur R, Kumar V, Kumar V (1995) Study of effective atomic numbers and mass attenuation coefficients in some compounds. Radiat Phys Chem 47:535–541. https://doi.org/10.1016/0969-806X(95)00057-5

    Article  Google Scholar 

  27. Singh K, Singh H, Sharma V, Nathuram R, Khanna A, Kumar R, Bhatti SS, Sahota HS (2002) Gamma-ray attenuation coefficients in bismuth borate glasses. Nucl Instrum Methods Phys Res B Beam Interact Mater Atoms 194:1–6. https://doi.org/10.1016/S0168-583X(02)00498-6

    Article  Google Scholar 

  28. Zhang W, Xiong H, Wang S, Li M, Gu Y, Li R (2016) Gamma-ray shielding performance of carbon nanotube film material. Mater Express 6:456–460. https://doi.org/10.1166/mex.2016.1326

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by The Commission of Scientific Research Projects of Bursa Uludag University, Project No. OUAP(F)-2016/10.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Orhan Gurler.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gurler, O., Tumsavas, Z. & Akar Tarim, U. Gamma-Ray Attenuation Study for the Soils of Bursa, Turkey, in the Energy Range 59.5–1332.5 keV. Iran J Sci Technol Trans Sci (2020). https://doi.org/10.1007/s40995-020-00906-3

Download citation

Keywords

  • Gamma-ray
  • Soil
  • Shielding
  • Attenuation coefficient
  • Half value layer
  • Tenth value layer