Skip to main content
Log in

Gate-Controlled Conductance in ABA-Stacked Trilayer Graphene

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions A: Science Aims and scope Submit manuscript

Abstract

In this work, we theoretically consider the electron transport across a junction on monolayer, Bernal-stacked AB bilayer and ABA trilayer graphene. The electronic transmissions through the electrostatic barrier in trilayer and bilayer graphene are computed within the scattering matrix using Landauer–Buttiker formula. We theoretically evaluate the total conductance. We study the effect of gate potential on the band structures. Our findings show that the effect of the gate potential could open an energy gap and the charge current can be controlled by tuning the gate potential in the middle region that acts as a barrier. Trilayer graphene is chosen as better appropriate candidate for industrial applications. Our findings show that the charge current can be controlled by tuning the gate potential in the middle region trilayer graphene that acts as a barrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Avetisyan AA, Partoens B, Peeters FM (2009) Electric field tuning of the band gap in graphene multilayers. Phys Rev B 79:035421

    Article  Google Scholar 

  • Blanter YM, Buttiker M (2000) Shot noise in mesoscopic conductors. Phys Rep 336:1

    Article  Google Scholar 

  • Campos LC, Young AF, Surakitbovorn K, Watanabe K, Taniguchi T, Jarillo-Herrero P (2012) Quantum and classical confinement of resonant states in a trilayer graphene fabry-pérot interferometer. Nat Commun 3:1239

    Article  Google Scholar 

  • Castro Neto AH, Guinia F, Prese NMR, Novoselov KS, Gaim AK (2009) The electronic properties of graphene. Rev Mod Phys 81:109

    Article  Google Scholar 

  • Cheng H, Hu C, Zhao Y, Qu L (2014) Graphene fiber: a new material platform for unique applications, NPG. Asia Mater 6:e113

    Article  Google Scholar 

  • Craciun MF, Russo S, Yamamoto M, Oostinga JB, Morpurgo AF, Tarucha S (2009) Trilayer graphene is a semimetal with a gate-tunable band overlap. Nat Nanotechnol 4:383–388

    Article  Google Scholar 

  • Giovannetti G, Khomyakov PA, Brocks G, Kelly PJ, Van den Brink J (2006) Substrate-induced band gap in graphene on hexagonal boron nitride: AB initio density functional calculations. Phys Rev B 76:073103

    Article  Google Scholar 

  • Gusynin VP, Sharapov SG, Reshetnyak AA (2015) Transport properties of AB stacked (Bernal) Bilayer graphene on and without substrate within 2- and 4-band approximations. AIP Conf Proc 1683:020070

    Article  Google Scholar 

  • Henriksen EA, Nandi D, Eisenstein JP (2012) Quantum hall effect and semimetallic behavior of dual-gated ABA-stacked trilayer graphene. Phys Rev X 2:011004

    Google Scholar 

  • Katsnelson ML, Novoselov KS, Gaim AK (2006) Chiral tunneling and the Klein paradox in graphene. Nat Phys 2:620–625

    Article  Google Scholar 

  • Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Ahn JH, Kim P, Choi JY, Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710

    Article  Google Scholar 

  • Kim M, Choi SM, Yoon HA, Choi SK, Lee JU, Kim J, Lee SW, Son YW, Cheong H (2015) Photocurrent generation at ABA/ABC lateral junction in trilayer graphene photodetector. Carbon 96:454–458

    Article  Google Scholar 

  • Kim M, Choi SM, Yoon HA, Choi SK, Lee JU, KimJ Lee S W, Son YW, Cheong H (2016) Photocurrent generation at ABA/ABC lateral junction in trilayer graphene photodetector. Carbon 96:454–458

    Article  Google Scholar 

  • Koshino M (2010) Interlayer screening effect in graphene multilayers with ABA and ABC stacking. Phys Rev B 81:125304

    Article  Google Scholar 

  • Kumar SB, Guo J (2012) Chiral tunneling in trilayer graphene. Appl Phys Lett 100:163102

    Article  Google Scholar 

  • Liu H, Jiang H, Xie CX (2012) Intrinsic superconductivity in ABA-stacked trilayer graphene. AIP Adv 2:041405

    Article  Google Scholar 

  • Lu CL, Chang CP, Huang YC, Lu JM, Hwang CC, Lin MF (2006a) Low-energy electronic properties of the AB-stacked few-layer graphites. J Phys Condens Matter 18:5849

    Article  Google Scholar 

  • Lu CL, Lin HC, Hwang CC, Wang J, Lin MF, Chang CP (2006b) Absorption spectra of trilayer rhombohedral graphite. Appl Phys Lett 89:221910

    Article  Google Scholar 

  • Lui CH, Li Z, Chen Z, Klimov PV, Brus LE, Heinz TF (2011) Imaging stacking order in few-layer graphene. Nano Lett 11:164–169

    Article  Google Scholar 

  • McCann E, Koshino M (2013) The electronic properties of bilayer graphene. Rep Prog Phys 76(5):056503

    Article  Google Scholar 

  • Mohammadi Y, Moradian R, Shirzadi Tabar F (2014) Effects of doping and bias voltage on the screening in AAA-stacked trilayer graphene. Solid State Commun 193:1–5

    Article  Google Scholar 

  • Montambaux G (2012) An equivalence between monolayer and bilayer honeycomb lattices. Eur Phys J B 85:30570–30577

    Article  Google Scholar 

  • Novoselov K (2007) Graphene mind the gap. Nat Mater 6(10):720–721

    Article  Google Scholar 

  • Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless dirac fermions in graphene. Nature 438:197

    Article  Google Scholar 

  • Orlita M, Potemski M (2010) Dirac electronic states in graphene systems: optical spectroscopy studies. Semicond Sci Technol 25(6):063001

    Article  Google Scholar 

  • Rashidian Z, Bludov YV, Ribeiro RM, Peres NMR, Vasilevskiy MI (2014a) Optical conductivity of ABA stacked graphene trilayer: mid-IR resonance due to band nesting. J Phys Condens Matter 26:395301

    Article  Google Scholar 

  • Rashidian Z, Mojarabian FM, Bayati P, Rashedi G, Ueda A, Yokoyama T (2014b) Conductance and fano factor in normal/ferromagnetic/normal bilayer graphene junction. J Phys Conductance Matter 26:255302

    Article  Google Scholar 

  • Rashidian Z, Bayati P, Lorestaniwiess Z (2016) Effects of Rashba spin orbit coupling on the conductance of graphene-based nanoribbons. Int J Modern Phys B 30:1750043

    Google Scholar 

  • Redouani I, Jellal A, Bahaoui A, Bahlouli H (2018) Multibands tunneling in AAA-stacked trilayer graphene. Superlattices Microstruct 116:44–53

    Article  Google Scholar 

  • Ubrig N, Blake P, Van der Marel D, Kuzmenko AB (2012) Infrared spectroscopy of hole-doped ABA-stacked trilayer graphene. EPL 100:58003

    Article  Google Scholar 

  • Van Duppen B, Sena SHR, Peeters FM (2013a) Multiband tunneling in trilayer graphene. Phys Rev B 87:195439

    Article  Google Scholar 

  • Van Duppen B, Sena SHR, Peeters FM (2013b) Multiband tunneling in trilayer graphene. Phys Rev B 87:195439

    Article  Google Scholar 

  • Wang D, Jin G (2012) Tunable electronic transport characteristics through an AA-stacked bilayer graphene with magnetoelectric barriers. J Appl Phys 112:053714

    Article  Google Scholar 

  • Zou K, Zhang F, Clapp C, MacDonald AH, Zhu J (2013) Transport studies of dual-gated ABC and ABA trilayer graphene: band gap opening and band structure tuning in very large perpendicular electric fields. Nano Lett 13:369–373

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeinab Rashidian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadzadeh, N., Rashidian, Z. & Baharvand, A. Gate-Controlled Conductance in ABA-Stacked Trilayer Graphene. Iran J Sci Technol Trans Sci 43, 2657–2663 (2019). https://doi.org/10.1007/s40995-019-00716-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40995-019-00716-2

Keywords

Navigation