Skip to main content
Log in

Effect on Electrical Properties of Gd-Doped BiFeO3–PbZrO3

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions A: Science Aims and scope Submit manuscript

Abstract

The (1 − x)(BiFe1−yGdyO3)−x(PbZrO3) [x = 0.5, y = 0.05, 0.10, 0.15, 0.20] were synthesized using a high-temperature solid-state reaction technique. X-ray analysis confirms the formation of the composites. The dielectric properties of the composites were studied. The hysteresis loop suggested that the materials were lossy. The impedance parameters were studied in a wide range of frequency (102–106 Hz) at different temperatures for all samples. The Nyquist plot suggested the contribution of bulk effect as well as grain boundary effect and the bulk resistance deceased with a rise in temperature for all the samples. The electrical transport confirmed the presence of hopping mechanism in the materials. The dc conductivity of the materials increased with a rise in temperature. The frequency variation of ac conductivity obeyed the Jonscher’s universal power law and confirmed the small polaron (SP) tunneling effect due to low activation energy for all the samples. Temperature dependence of dc and ac conductivity indicated the thermally activated process of the materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Behera AK, Mohanty NK, Satpathy SK, Behera B, Nayak P (2014) Investigation of complex impedance and modulus properties of Nd doped 0.5BiFeO3–0.5PbTiO3 multiferroic composites. Cent Eur J Phys 12:851

    Google Scholar 

  • Bibes M, Barthélémy A (2008) Towards a magnetoelectric memory. Nat Mater 7:425

    Article  Google Scholar 

  • Bonanos N, Steele BCH, Buttler EP, Johnson WB, Worrell WL, Macdonald DD, Mckubre MCH (1987) Applications of impedance spectroscopy. In: Macdonald JR (ed) impedance spectroscopy. Wiley, New York, p 191

    Google Scholar 

  • Catalan G (2012) On the link beween octahedral rotations and conductivity in the domain walls of BiFeO3. Ferroelectrics 433:65

    Article  Google Scholar 

  • Catalan G, Scott JF (2009) Physics and applications of bismuth ferrite. Adv Mater 21:2463

    Article  Google Scholar 

  • Chang W, Kirchoefer SW, Pond JM, Bellotti JA, Qadri SB (2004) Room-temperature tunable microwave properties of strained SrTiO3 films. J Appl Phys 96:11

    Google Scholar 

  • Chen XZ, Yang RL, Zhou JP, Chen XM, Jiang Q, Liu P (2013) Dielectric and magnetic properties of multiferroic BiFeO3 ceramics sintered with the powders prepared by hydrothermal method. Solid State Sci 19:117

    Article  Google Scholar 

  • Elliott SR (1987) A.c. conduction in amorphous chalcogenide and pnictide semiconductors. Adv Phys 36:135

    Article  Google Scholar 

  • Gerson R, Chou PC, James WJ (1967) Ferroelectric properties of PbZrO3–BiFeO3 solid solutions. J Appl Phys 38:55

    Article  Google Scholar 

  • Greičius S, Banys J, Szafraniak-Wiza I (2009) Dielectric investigations of BiFeO3 ceramics. Process Appl Ceram 3:85

    Article  Google Scholar 

  • Hasan BA (2013) Dielectric properties of vacuum evaporated SnS thin films. J Nano Adv Mater 1:87

    Google Scholar 

  • Hodge IM, Ingram MD, West AR (1976) Impedance and modulus spectroscopy of polycrystalline solid electrolytes. J Electroanal Chem 74:125

    Article  Google Scholar 

  • Jang JH, Yoon KH, Shin H (1998) Electric fatigue in sol–gel prepared Pb(Zr, Sn, Ti)NbO3 thin films. J Appl Phys Lett 73:1823

    Article  Google Scholar 

  • Jonscher AK (1977) The ‘universal’ dielectric response. Nature 267:673

    Article  Google Scholar 

  • Ketsuwan P, Prasatkhetragarn A, Triamnuk N, Huang CC, Ngamjarurojana A, Ananta S, Cann DP, Yimnirun R (2009) Electrical conductivity and dielectric and ferroelectric properties of chromium doped lead zirconate titanate ceramic. Ferroelectrics 382:49

    Article  Google Scholar 

  • Khomchenko VA, Kiselev DA, Kopcewicz M, Maglione M, Shvartsman VV, Borisov P, Kleemann W, Lopes AML, Pogorelov YG, Araujo J, Rubinger RM, Sobolev NA, Vieira JM, Kholkin AL (2009) Doping strategies for increased performance in BiFeO3. J Magn Magn Mater 321:1692

    Article  Google Scholar 

  • Kiselev SV, Ozerov RP, Zhdanov GS (1963) Detection of magnetic order in ferroelectric BiFeO3 by neutron diffraction. Soviet Phys Dokl 7:742

    Google Scholar 

  • Kubel F, Schmid H (1990) Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3. Acta Crystallogr B 46:698

    Article  Google Scholar 

  • Lancaster MJ, Powell J, Porch A (1998) Thin-film ferroelectric microwave devices. Supercond Sci Technol 11:1323

    Article  Google Scholar 

  • Lin GH, Fu R, He S, Sun J, Zhang X, Sengupta L (2002) Reliability and stability of novel tunable thin film. Mater Res Soc Symp Proc 720:15

    Article  Google Scholar 

  • Maksymovych P, Seidel J, Chu YH, Wu P, Baddorf AP, Chen LQ, Kalinin SV, Ramesh R (2011) Dynamic conductivity of ferroelectric domain walls in BiFeO3. Nano Lett 11:1906

    Article  Google Scholar 

  • Mazumder R, Sen A (2009) Effect of Pb-doping on dielectric properties of BiFeO3 ceramics. J Alloys Compd 475:577

    Article  Google Scholar 

  • Parui J, Krupanidhi SB (2006) Dielectric properties of (110) oriented and La-modified thin films grown by sol–gel process on substrate. J Appl Phys 100:044102

    Article  Google Scholar 

  • Pattanayak S, Choudhary RNP, Das PR (2014) Effect of praseodymium on electrical properties of BiFeO3 multiferroic. J Electron Mater 43:470

    Article  Google Scholar 

  • Patterson A (1939) The Scherrer formula for x-ray particle size determination. Phys Rev 56:978

    Article  MATH  Google Scholar 

  • Pradhan DK, Choudhary RNP, Rinaldi C, Katiyar RS (2009) Effect of Mn substitution on electrical and magnetic properties of Bi0.90La0.10FeO3. J Appl Phys 106:024102

    Article  Google Scholar 

  • Qi X, Zhou J, Yue Z, Gui Z, Li L, Buddhudu S (2004) A ferroelectric ferromagnetic composite material with significant permeability and permittivity. Adv Funct Mater 14:920

    Article  Google Scholar 

  • Rao BUM, Srinivasan G, Babu VS, Seehra MS (1991) Magnetic properties of amorphous BiFeO3–PbZrO3 sputtered films. J Appl Phys 69:5463

    Article  Google Scholar 

  • Satpathy SK, Mohanty NK, Behera AK, Behera B, Nayak P (2013) Electrical conductivity of Gd doped BiFeO3–PbZrO3. Compos Front Mater Sci 7:295

    Article  Google Scholar 

  • Satpathy SK, Mohanty NK, Behera AK, Behera B (2014) Dielectric and electrical properties of 0.5 (BiGd0. 05Fe0. 95O3)–0.5 (PbZrO3), composite. Mater Sci Poland 32:59

    Article  Google Scholar 

  • Sen S, Pramanik P, Choudhary RNP (2006) Impedance spectroscopy study of the nanocrystalline ferroelectric (PbMg)(ZrTi)O3 system. Appl Phys A 82:549

    Article  Google Scholar 

  • Sengupta SS, Roberts D, Li JF, Kim MC, Payne DA (1995) Field-induced phase switching and electrically driven strains in sol-gel derived antiferroelectric (Pb, Nb)(Zr, Sn, Ti)O3 thin layers. J Appl Phys 78:1171

    Article  Google Scholar 

  • Sengwa RJ, Choudhary S, Sankhla S (2008) Low frequency dielectric relaxation processes and ionic conductivity of montmorillonite clay nanoparticles colloidal suspension in poly(vinyl pyrrolidone)-ethylene glycol blends. Express Polym Lett 2:800

    Article  Google Scholar 

  • Sengwa RJ, Sankhla S, Choudhary S (2009) Dielectric dispersion and ionic conduction in hydrocolloids of poly (vinyl alcohol)–poly (ethylene oxide) blend–montmorillonite clay nanocomposites. Indian J Eng Mater Sci 16:395

    Google Scholar 

  • Seveno R, Gundel HW, Seifert S (2001) Preparation of antiferroelectric PbZrxTi1−xO3 thin films on LaSrMnO3-coated steel substrates. Appl Phys Lett 79:4204

    Article  Google Scholar 

  • Shihub S, Gould RD (1995) Frequency dependence of electronic conduction parameters in evaporated thin films of cobalt phthalocyanine. Thin Solid Films 254:187

    Article  Google Scholar 

  • Spaldin NA, Cheong SW, Ramesh R (2010) Multiferroics: past, present, and future. Phys Today 63:38

    Article  Google Scholar 

  • Tagantsev AK, Vaideeswaran K, Vakhrushev SB, Filimonov AV, Burkovsky RG, Shaganov A, Andronikova D, Rudskoy AI, Baron AQR, Uchiyama H, Chernyshov D, Bosak A, Ujma Z, Roleder K, Majchrowski A, Ko JH, Setter N (2013) The origin of antiferroelectricity in PbZrO3. Nat Commun 4:1

    Article  Google Scholar 

  • Triberis GP, Dimakogianni M (2009) Field and temperature dependence of the small polaron hopping electrical conductivity in 1D disordered systems. J Phys Condens Matter 21:385406

    Article  Google Scholar 

  • Vengalisa B, Devensona J, Oginskisa AK, Butkute R, Maneikisa A, Steikunien A, Dapkusa L, Banysb J, Kinka M (2008) Growth and investigation, of heterostructures based, on multiferroic BiFeO3. Acta Phys Pol, A 113:1095

    Article  Google Scholar 

  • Vopsaroiu M, Cain MG, Sreenivasulu G, Srinivasen G, Balbashov AM (2012) Multiferroic composite for combined detection of static and alternating magnetic fields. Mater Lett 66:282

    Article  Google Scholar 

  • Wen S, Wang S, Chung DDL (1999) Carbon fiber structural composites as thermistors. Sensors Actuator 78:180

    Article  Google Scholar 

  • Wu E (1989) POWD, an interactive program for powder diffraction data interpretation and indexing. J Appl Cryst 22:506

    Article  Google Scholar 

  • Xu B, Moses P, Pai NG, Cross LE (1998) Charge release of lanthanum-doped lead zirconate titanate stannate antiferroelectric thin films. Appl Phys Lett 72:593

    Article  Google Scholar 

  • Xu B, Ye Y, Cross LE (2000) Dielectric properties and field-induced phase switching of lead zirconate titanate stannate antiferroelectric thick films on silicon substrates. J Appl Phys 87:2507

    Article  Google Scholar 

  • Yamakawa K, McKinstry ST, Dougherty JP, Krupanidhi SB (1995) Reactive magnetron co-sputtered antiferroelectric lead zirconate thin films. Appl Phys Lett 67:2014

    Article  Google Scholar 

  • Zangina T, Hassan J, Matori KA, Azis RS, Ahmadu U, See A (2016) Sintering behavior, ac conductivity and dielectric relaxation of Li1.3Ti1.7Al0.3(PO4)3 NASICON compound. Results Phys 6:719

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support through DRS-I of UGC under SAP, School of Physics, Sambalpur University. One of the authors BB acknowledges the SERB under DST Fast Track Scheme for Young Scientist (Project No. SR/FTP/PS-036/2011) New Delhi, India).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Banarji Behera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satpathy, S.K., Mohanty, N.K., Behera, A.K. et al. Effect on Electrical Properties of Gd-Doped BiFeO3–PbZrO3. Iran J Sci Technol Trans Sci 43, 2017–2026 (2019). https://doi.org/10.1007/s40995-019-00682-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40995-019-00682-9

Keywords

Navigation