Skip to main content
Log in

Cationic Ring Opening Polymerization of Octamethylcyclotetrasiloxane Using a Cost-Effective Solid Acid Catalyst (Maghnite-H+)

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions A: Science Aims and scope Submit manuscript

Abstract

The polymerization of octamethylcyclotetrasiloxane (D4) catalyzed by Maghnite-H+, a nontoxic and green solid catalyst, is studied. The Maghnite-H+ is a montmorillonite type 2:1 dioctahedral phyllosilicates whose interlayer ions are exchanged by hydronium ions after activation with sulfuric acid which gives it its catalytic appearance. D4 was polymerized cationically by ring opening at 60 °C without solvent using Maghnite-H+ contents less than 5% by weight. The molecular structure of the polymer obtained was identified by IR, 1H NMR and 13C NMR. The DSC was used to study the thermal properties. The operating conditions were optimized so that we can achieve best performance for obtaining a linear polymer with high average molecular mass. The variation of the molecular mass distribution was verified by GPC. Finally, a reaction mechanism was proposed to show the role of the Maghnite-H+ during the different steps of the reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 3

Similar content being viewed by others

References

  • Narayana PL et al (2011) US Patent. 20110237740 A1

  • Belbachir M, Bensaoula A (2001) US Patent. No 6, 274,527B1

  • Bouchama A, Ferrahi MI, Belbachir M (2015) Copolymerization of ε-caprolactone with tetrahydrofuran by a solid acid, in the presence of acetic anhydride. J Mater Environ Sci 6:977–982

    Google Scholar 

  • Chen B, Zhan X, Yi L, Chen F (2007) Cationic ring opening polymerization of octamethylcyclotetrasiloxane initiated by acid treated bentonite. Chin J Chem Eng 15:661–665

    Article  Google Scholar 

  • Chojnowski J, Cypryk M (2000) Silicon-containing polymers. Kluwer, Dordrecht

    Google Scholar 

  • Chojnowski J, Cypryk M, Kazmierski K (2002) Cationic polymerization of a model cyclotrisiloxane with mixed siloxane units initiated by a protic acid. Mechanism of polymer chain formation. Macromolecules 36:9904–9912

    Article  Google Scholar 

  • Chojnowski J, Rubinsztajn S, Fortuniak W, Kurjata J (2007) Oligomer and polymer formation in hexamethylcyclotrisiloxane (D3)—hydrosilane systems under catalysis by tris(pentafluorophenyl)borane. J Inorg Orgamet Polym Mater 17:173–187

    Article  Google Scholar 

  • Clark JH, Rhodes CN (2000) Clean synthesis using porous inorganic solid catalysts and supported reagents. Royal Society of Chemistry, Cambridge

    Google Scholar 

  • Conan JT, William PW, Guoping C (2003) Acid and base catalyzed ring-opening polymerization of 2,2,4,4,6,6-hexamethyl-8,8-diphenylcyclotetrasiloxane. Polymer 44:4149–4155

    Article  Google Scholar 

  • Crafts JM (1900) Friedel memorial lecture. J Chem Soc Trans 77:993–1000

    Article  Google Scholar 

  • DeGroot JV et al (2004) Highly transparent silicone materials. In: Norwood R, Eich M, Kuzyk M (eds) Linear and nonlinear optics of organic materials, 2nd edn. Proc SPIE IV, Midland, pp 116–123

    Chapter  Google Scholar 

  • Dollase T, Spiess HW, Gottlieb M, Yerushalmi-Rozen R (2002) Crystallization of PDMS: the effect of physical and chemical crosslinks. Europhys Lett 60:390–396

    Article  Google Scholar 

  • Dumitriu S (2002) Polymeric biomaterials. Marcel Dekker, New York

    Google Scholar 

  • Friedel C, Crafts JM (1877) Comprehensive organic name reactions and reagents. Comptes Rendus 84:1392–1450

    Google Scholar 

  • Gee RP (2015) Emulsion polymerization of dimethylcyclosiloxane in cationic emulsion: mechanism study utilizing two phase liquid–liquid reaction kinetics. Colloids Surf A Physicochem Eng Asp 481:297–306

    Article  Google Scholar 

  • Jian W, Xueming C, Panjin J, Qing H, Mingtao R (2015) Synthesis and characterization of the copolymers containing blocks of polydimethylsiloxane in low boiling point mixtures. Mater Chem Phys 149:216–223

    Google Scholar 

  • Jiang S, Qiu T, Li X (2010) Kinetic study on the ring-opening polymerization of octamethylcyclotetrasiloxane (D4) in miniemulsion. Polymer 51:4087–4094

    Article  Google Scholar 

  • Kendrick TC, Parbhoo B, White JW (1991) The silicon–heteroatom bond. Wiley, Chichester

    Google Scholar 

  • Kherroub DE, Belbachir M, Lamouri S, Bouhadjar L, Chikh K (2013) Synthesis of polyamide-6/montmorillonite nanocomposites by direct in situ polymerization catalysed by exchanged clay. Orient J Chem 29:1429–1436

    Article  Google Scholar 

  • Kherroub DE, Belbachir M, Lamouri S (2014a) Cationic ring opening polymerization of ε-caprolactam by a montmorillonite clay catalyst. BCREC 9:74–80

    Article  Google Scholar 

  • Kherroub DE, Belbachir M, Lamouri S (2014b) Preparation and characterization of organophilic montmorillonite (12-Maghnite) using Algerian clay. Orient J Chem 30:1647–1651

    Article  Google Scholar 

  • Kherroub DE, Belbachir M, Lamouri S (2015a) Nylon 6/clay nanocomposites prepared with Algerian modified clay (12-Maghnite). Res Chem Intermed 41:5217–5228

    Article  Google Scholar 

  • Kherroub DE, Belbachir M, Lamouri S (2015b) Study and optimization of the polymerization parameter of furfuryl alcohol by Algerian modified clay. Arab J Sci Eng 40:143–150

    Article  Google Scholar 

  • Kherroub DE, Belbachir M, Lamouri S (2015c) Synthesis of poly(furfuryl alcohol)/montmorillonite nanocomposites by direct in situ polymerization. Bull Mater Sci 38:57–63

    Article  Google Scholar 

  • Meghabar R, Megherbi A, Belbachir M (2003) Maghnite-H+, an ecocatalyst for cationic polymerization of N-vinyl-2-pyrrolidone. Polymer 44:4097–4100

    Article  Google Scholar 

  • Molenberg A, Möller M (1995) A fast catalyst system for the ring-opening polymerization of cyclosiloxanes. Macromol Rapid Commun 16:449–453

    Article  Google Scholar 

  • Namrata ST, Florence DJ, Lawrence F, Jacques L (2012) Oxidation, chain scission and cross-linking studies of polysiloxanes upon ageings. OJOPM 2:13–22

    Article  Google Scholar 

  • Narins RS, Beer K (2006) Liquid injectable silicone: a review of its history, immunology, technical considerations, complications, and potential. Plast Reconstr Surg 118:77–84

    Article  Google Scholar 

  • Pibre G, Chaumont P, Fleury E, Cassagnau P (2008) Ring-opening polymerization of decamethylcyclopentasiloxane initiated by a superbase: kinetics and rheology. Polymer 49:234–240

    Article  Google Scholar 

  • Rodriquez F (1989) Principles of polymer systems. Hemisphere Publishing Corp, New York

    Google Scholar 

  • Sigwalt P (1987) New developments in cationic polymerization of cyclosiloxanes. Polym J 19:567–580

    Article  Google Scholar 

  • Sun CN, Shen MM, Deng LL, Mo JQ, Zhou BW (2014) Kinetics of ring-opening polymerization of octamethylcyclotetrasiloxane in microemulsion. Chin Chem Lett 25:621–626

    Article  Google Scholar 

  • Wilczek L, Rubinsztajn S, Chojnowski J (1986) Comparison of the cationic polymerization of octamethylcyclotetrasiloxane and hexamethylcyclotrisiloxane. Makromol Chem 187:39–51

    Article  Google Scholar 

  • Ya-Qing Z, Xiang K, Xiao-Li Z, Zheng-Hong L (2010) Particle kinetics and physical mechanism of microemulsion polymerization of octamethylcyclotetrasiloxane. Powder Technol 201:146–152

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Djamal Eddine Kherroub.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kherroub, D.E., Belbachir, M., Lamouri, S. et al. Cationic Ring Opening Polymerization of Octamethylcyclotetrasiloxane Using a Cost-Effective Solid Acid Catalyst (Maghnite-H+). Iran J Sci Technol Trans Sci 43, 75–83 (2019). https://doi.org/10.1007/s40995-017-0269-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40995-017-0269-y

Keywords

Navigation