Skip to main content
Log in

Visibility of 4-covers of elliptic curves

  • Research
  • Published:
Research in Number Theory Aims and scope Submit manuscript

Abstract

Let C be a 4-cover of an elliptic curve E, written as a quadric intersection in \({\mathbb P}^3\). Let \(E'\) be another elliptic curve with 4-torsion isomorphic to that of E. We show how to write down the 4-cover \(C'\) of \(E'\) with the property that C and \(C'\) are represented by the same cohomology class on the 4-torsion. In fact we give equations for \(C'\) as a curve of degree 8 in \({\mathbb P}^5\). We also study the K3-surfaces fibred by the curves \(C'\) as we vary \(E'\). In particular we show how to write down models for these surfaces as complete intersections of quadrics in \({\mathbb P}^5\) with exactly 16 singular points. This allows us to give examples of elliptic curves over \({\mathbb Q}\) that have elements of order 4 in their Tate–Shafarevich group that are not visible in a principally polarized abelian surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barth, W.: Projective models of Shioda modular surfaces. Manuscripta Math. 50(1), 73–132 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bosma, W., Cannon, J., Cannon, C.: The Magma algebra system. I. The user language. J. Symbolic Comput. 24(3), 235–265 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bruin, N., Doerksen, K.: The arithmetic of genus two curves with \((4,4)\)-split Jacobians. Canad. J. Math 63(5), 992–1024 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bruin, N.: Visualising Sha[2] in abelian surfaces. Math. Comp. 73(247), 1459–1476 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bruin, N., Dahmen, S.R.: Visualizing elements of Sha[3] in genus 2 jacobians. In: Hanrot, G., Morain, F., Thomé, E. (eds.) Algorithmic Number Theory. ANTS 2010. Lecture Notes in Computer Science, vol. 6197. Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-14518-6_12

  6. Cremona, J. E.: Algorithms for modular elliptic curves, 2nd edn. Cambridge University Press, Cambridge. http://www.warwick.ac.uk/~masgaj/ftp/data/ (1997)

  7. Cremona, J.E.: Classical invariants and 2-descent on elliptic curves. J. Symbolic Comput. 31(1–2), 71–87 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cremona, J.E., Fisher, T.A., O’Neil, C., Simon, D., Stoll, M.: Explicit \(n\)-descent on elliptic curves. I. Algebra. J. Reine Angew. Math. 615(121–155), 0075–4102 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Cremona, J.E., Fisher, T.A., Stoll, M.: Minimisation and reduction of 2-, 3- and 4-coverings of elliptic curves. Algebra Number Theory 4(6), 763–820 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cremona, J.E., Mazur, B.: Visualizing elements in the Shafarevich–Tate group. Exp. Math 9(1), 13–28 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fisher, T.: Some improvements to 4-descent on an elliptic curve. In: van der Poorten, A.J., Stein, A. (eds.) Algorithmic Number Theory. ANTS 2008. Lecture Notes in Computer Science, vol. 5011. Springer, Berlin (2008). https://doi.org/10.1007/978-3-540-79456-1_8

  12. Fisher, T.: The Hessian of a genus one curve. Proc. Lond. Math. Soc 104(3), 613–648 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fisher, T.: Invariant theory for the elliptic normal quintic I. Twists of X(5). Math. Ann. 356(2), 589–616 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fisher, T.: Invisibility of Tate–Shafarevich groups in abelian surfaces. IMRN 15, 4085–4099 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Klenke, T.A.: Visualizing elements of order two in the Weil–Châtelet group. J. Number Theory 110(2), 387–395 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mazur, B.: Visualizing elements of order three in the Shafarevich–Tate group. Asian J. Math. 3(1), 221–232 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Merriman, J.R., Siksek, S., Smart, N.P.: Explicit \(4\)-descents on an elliptic curve. Acta Arith 77(4), 385–404 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Milne, J.S.: Abelian varieties, Arithmetic geometry (Storrs, Conn., 1984), pp. 103–150. Springer, New York (1986)

    Google Scholar 

  19. Silverberg, A.: Explicit families of elliptic curves with prescribed mod N representations. In: Modular forms and Fermat’s last theorem (Boston, MA, 1995), pp. 447–461. Springer, New York (1997)

  20. Stamminger, S.K.M.: Explicit 8-descent on elliptic curves, International University Bremen, http://nbn-resolving.de/urn:nbn:de:101:1-201305171186, (PhD thesis) (2005)

  21. Womack, T.: Explicit descent on elliptic curves, University of Nottingham, (PhD thesis) (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Fisher.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bruin, N., Fisher, T. Visibility of 4-covers of elliptic curves. Res. number theory 4, 11 (2018). https://doi.org/10.1007/s40993-018-0106-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40993-018-0106-1

Keywords

Mathematics Subject Classification

Navigation