Halloysite nanotubes-based supercapacitor: preparation using sonochemical approach and its electrochemical performance

Abstract

In this study, halloysite nanotubes polyaniline (HNT-PANI) nanocomposite was synthesized by using an ultrasound-assisted method. Because of high conductivity, ease of synthesis, low cost, nanosize tubular structure and improved structural/electrochemical properties, HNT-PANI had been used for the electrode fabrication of a supercapacitor. The dispersion of halloysite nanotubes in polyaniline was prepared by following an ultrasound approach. The structural and morphological studies of the HNT-PANI nanocomposite were investigated by X-ray diffraction, Fourier Transform Infrared Spectroscopy, Raman and transmission electron microscopy. The length of the halloysite nanotubes varied from 200 to 1000 nm and the composite nanoparticles possessed tubular hallow shaped structure. The electrochemical performance of the HNT-PANI nanocomposite electrode was analyzed after performing potentiodynamic and electrochemical impedance spectroscopic studies. The crystallite size of HNT-PANI composite was calculated and the average size ranged from 30 to 100 nm. HNT-PANI composite electrode exhibited the highest specific capacitance of 282.5 F/g at a current density of 0.5 A/g.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Antill SJ (2003) Halloysite: a low-cost alternative nanotube. Aust J Chem 56(7):723–724

    Google Scholar 

  2. Arcudi F, Cavallaro G, Lazzara G, Massaro M, Milioto S, Noto R, Riela S (2014) Selective functionalization of halloysite cavity by click reaction: structured filler for enhancing mechanical properties of bionanocomposite films. J Phys Chem C 118(27):15095–15101

    Google Scholar 

  3. Asim N, Radiman S, Yarmo MA (2008) Preparation and characterization of core-shell polyaniline/V2O5 nanocomposite via microemulsion method. Mater Lett 62:1044–1047

    Google Scholar 

  4. Aydinli A, Recep Y, Husnu E (2018) Vertically aligned carbon nanotube polyaniline nanocomposite supercapacitor electrodes. Int J Hydrog Energy 43:18617–18625

    Google Scholar 

  5. Babu A, Ankan D, Ruey-an D (2017) Nano assembly of N-doped graphene quantum dots anchored Fe3O4/halloysite nanotubes for high performance supercapacitor. Electrochim Acta 245:912–923

    Google Scholar 

  6. Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc 73:373–380

    Google Scholar 

  7. Berthier P (1826) Analyse the halloysite. Annales de chimie et de physique 32:331–334

    Google Scholar 

  8. Bhadra S, Khastgir D, Singha NK, Lee JH (2009) Progress in preparation, processing and applications of polyaniline. Prog Polym Sci 34(8):783–810

    Google Scholar 

  9. Chen Z, Zhang Z, Du A, Zhang Y, Men M, Li G, Cui G (2019) Fast magnesiation kinetics in α-Ag2S nanostructures enabled by an in situ generated silver matrix. Chem Commun 55(30):4431–4434

    Google Scholar 

  10. Chuang FY, Yang SM (2008) Cerium dioxide/polyaniline core-shell nanocomposites. J Colloid Interface Sci 320:194–201

    Google Scholar 

  11. Conway BE (1999) Electrochemical supercapacitors scientific fundamentals and technological applications. Springer, New York

    Google Scholar 

  12. Dai T, Yujie J (2011) Supramolecular hydrogels of polyaniline-poly (styrene sulfonate) prepared in concentrated solutions. Polymer 52:2550–2558

    Google Scholar 

  13. Diarmid MAG (2001) Synthetic metals: a novel role for organic polymers (Nobel lecture). Angew Chem Int Ed 40(14):2581–2590

    Google Scholar 

  14. Diaz AF, Logan JA (1980) Electroactive polyaniline films. J Electroanal Chem Interfacial Electrochem 111(1):111–114

    Google Scholar 

  15. Dong Y, Marshall J, Haroosh HJ, Mohammad S, Liu D, Qi X, Lau K (2015) Composites: part A polylactic acid (PLA)/halloysite nanotube (HNT) composite mats: influence of HNT content and modification. Compos A 76:28–36

    Google Scholar 

  16. Du C, Zhou X, Liu Z, Mai Y (2011) Multi-holed clay nanotubes and their modification with a polyaniline nanolayer. J Mater Sci 46:446–450

    Google Scholar 

  17. Fan P, Wang S, Liu H, Liao L, Lv G, Mei L (2020) Polyaniline nanotube synthesized from natural tubular halloysite template as high performance pseudocapacitive electrode. Electrochim Acta 331:135259

    Google Scholar 

  18. Frackowiak E, Khomenko V, Jurewicz K, Lota K, Béguin F (2006) Supercapacitors based on conducting polymers/nanotubes composites. J Power Sources 153(2):413–418

    Google Scholar 

  19. Frost RL, Shurvellt HF (1997) Raman microprobe spectroscopy of halloysite. Clays Clay Miner 45:68–72

    Google Scholar 

  20. Gao H, Xiaohong W, Ganghu W, Chen H (2018) An urchinlike MgCo2O4@PPy core-shell composite grown on Ni Foam for a high-performance all solid-state asymmetric supercapacitor. Nanoscale 10:10190–10202

    Google Scholar 

  21. Gnana BSR, Ramprasad RNR, Asiri AM, Wu JJ, Anandan S (2015) Ultrasound assisted synthesis of Mn3O4 nanoparticles anchored graphene nanosheets for supercapacitor applications. Electrochim Acta 156:127–137

    Google Scholar 

  22. Goda ES, Gab-Allah MA, Singu BS, Yoon KR (2019) Halloysite nanotubes based electrochemical sensors: a review. Microchem J 147:1083–1096

    Google Scholar 

  23. Guo S, Zhao K, Feng Z, Hou Y, Li H, Zhao J, Song H (2018) High performance liquid crystalline bionanocomposite ionogels prepared by in situ crosslinking of cellulose/halloysite nanotubes/ionic liquid dispersions and its application in supercapacitors. Appl Surf Sci 455:599–607

    Google Scholar 

  24. Heeger AJ (2002) Semiconducting and metallic polymers: the fourth generation of polymeric materials. Synth Met 125:23–42

    Google Scholar 

  25. Htut KZ, Kim M, Lee E, Lee G, Baeck SH, Shim SE (2017) Biodegradable polymer-modified graphene/polyaniline electrodes for supercapacitors. Synth Met 227:61–70

    Google Scholar 

  26. Hu F, Xu J, Zhang S, Jiang J, Yan B, Gu Y, Chen S (2018) Core/shell structured halloysite/polyaniline nanotubes with enhanced electrochromic properties. J Mater Chem C 6(21):5707–5715

    Google Scholar 

  27. Huang C, Chen H (2019) Synthesis of polyaniline/nickel oxide/sulfonated graphene ternary composite for all-solid-state asymmetric supercapacitor. Appl Surf Sci 505:144589

    Google Scholar 

  28. Huang C, Yinhui D (2019) PVP-assisted growth of Ni-Co oxide on N-doped reduced graphene oxide with enhanced pseudocapacitive behavior. Chem Eng J 378:122202

    Google Scholar 

  29. Huang H, Zeng X, Li W, Wang H, Wang Q, Yang Y (2014) Reinforced conducting hydrogels prepared from the in situ polymerization of aniline in an aqueous solution of sodium alginate. J Mater Chem A 2:16516–16522

    Google Scholar 

  30. Huang H, Yao J, Chen H, Zeng X, Chen C, She X, Li L (2016) Facile preparation of halloysite/polyaniline nanocomposites via in situ polymerization and layer-by-layer assembly with good supercapacitor performance. J Mater Sci 51:4047–4054

    Google Scholar 

  31. Hussein AK (2015) Applications of nanotechnology in renewable energies—a comprehensive overview and understanding. Renew Sustain Energy Rev 42:460–476

    Google Scholar 

  32. Ismail H, Pasbakhsh P, Ahmad Fauzi MN, Abu Bakar A (2009) The effect of halloysite nanotubes as a novel nanofiller on curing behaviour, mechanical and microstructural properties of ethylene propylene diene monomer (EPDM) nanocomposites. Polym Plast Technol Eng 48(3):313–323

    Google Scholar 

  33. Izwan RS, Sharif NF, Muhamad II (2014) Polyaniline-coated halloysite nanotubes: effect of para-hydroxybenzene sulfonic acid doping. Compos Interfaces 21:715–722

    Google Scholar 

  34. Jamal R, Shao W, Xu F, Abdiryim T (2013) Comparison of structure and electrochemical properties for PANI/TiO2/G and PANI/G composites synthesized by mechanochemical route. J Mater Res 28(6):832

    Google Scholar 

  35. Jo Y, Cho WJ, Inamdar AI, Kim BC, Kim J, Kim H, Im H, Yu KH, Kim DY (2014) Electrochemical supercapacitor properties of polyaniline thin films in organic salt added electrolytes. J Appl Polym Sci 131(11):40306

    Google Scholar 

  36. Kitani A, Kaya M, Tsujioka SI, Sasaki K (1988) Flexible polyaniline. J Polym Sci Part A Polym Chem 26(6):1531–1539

    Google Scholar 

  37. Kumar GV, Krishnamoorthy K, Radhakrishnan S, Kim NJ, Kim SJ (2016) In-situ chemical oxidative polymerization of aniline monomer in the presence of cobalt molybdate for supercapacitor applications. J Ind Eng Chem 36:163–168

    Google Scholar 

  38. Levis SR, Deasy PB (2002) Characterisation of halloysite for use as a microtubular drug delivery system. Int J Pharm 243:125–134

    Google Scholar 

  39. Li X, Zhong Q, Zhang X, Li T, Huang J (2015) In-situ polymerization of polyaniline on the surface of graphene oxide for high electrochemical capacitance. Thin Solid Films 584:348–352

    Google Scholar 

  40. Li K, Liu X, Chen S, Pan W, Zhang J (2019) A flexible solid-state supercapacitor based on graphene/polyaniline paper electrodes. J Energy Chem 32:166–173

    Google Scholar 

  41. Lin LY, Yeh MH, Tsai JT, Huang YH, Sun CL, Ho KC (2013) A novel core–shell multi-walled carbon nanotube@ graphene oxide nanoribbon heterostructure as a potential supercapacitor material. J Mater Chem A 1(37):11237–11245

    Google Scholar 

  42. Liu C, Li F, Ma LP, Cheng HM (2010) Advanced materials for energy storage. Adv Mater 22:28–62

    Google Scholar 

  43. Liu WF, Yang YZ, Liu XG, Xu BS (2016) Preparation and electrochemical performance of a polyaniline-carbon microsphere hybrid as a supercapacitor electrode. New Carbon Mater 31(6):594–599

    Google Scholar 

  44. Liu Y, Xu N, Chen WC, Wang X, Sun C, Su Z (2018) High cycling stable supercapacitor through electrochemical deposition of metal–organic frameworks/polypyrrole positive electrode. Dalton Trans 47(38):13472–13478

    Google Scholar 

  45. Luo X, Killard AJ, Morrin A, Smyth MR (2007) In situ electropolymerised silica-polyaniline core-shell structures: electrode modification and enzyme biosensor enhancement. Electrochim Acta 52:1865–1870

    Google Scholar 

  46. Ma Q, Song H, Zhuang Q, Liu J, Zhang Z, Mao C, Chen K (2018) Iron-nitrogen-carbon species boosting fast conversion kinetics of Fe1-xS@ C nanorods as high rate anodes for lithium ion batteries. Chem Eng J 338:726–733

    Google Scholar 

  47. Manivel P, Ramakrishnan S, Kothurkar NK, Balamurugan A, Ponpandian N, Mangalaraj D, Viswanathan C (2013) Optical and electrochemical studies of polyaniline/SnO2 fibrous nanocomposites. Mater Res Bull 48(2):640–645

    Google Scholar 

  48. Mi H, Zhang X, An S, Ye X, Yang S (2007) Microwave-assisted synthesis and electrochemical capacitance of polyaniline/multi-wall carbon nanotubes composite. Electrochem Commun 9:2859–2862

    Google Scholar 

  49. Miao YE, Fan W, Chen D, Liu T (2013) High-performance supercapacitors based on hollow polyaniline nano fibers by electrospinning. ACS Appl Mater Interfaces 5:4423–4428

    Google Scholar 

  50. Mostafaei A, Zolriasatein A (2012) Progress in natural science: materials international synthesis and characterization of conducting polyaniline nanocomposites containing ZnO nanorods. Prog Nat Sci Mater Int 22(4):273–280

    Google Scholar 

  51. Murali RS, Padaki M, Matsuura T, Abdullah MS, Ismail AF (2014) Polyaniline in situ modified halloysite nanotubes incorporated asymmetric mixed matrix membrane for gas separation. Sep Purif Technol 132:187–194

    Google Scholar 

  52. Naarmann H (2012) Polymers, electrically conducting. Ullmann’s Encyclopedia of Industrial Chemistry 29:295–314

    Google Scholar 

  53. Ouyang J, Mu D, Zhang Y, Yang H (2018) Mineralogy and physico-chemical data of two newly discovered halloysite in China and their contrasts with some typical minerals. Minerals 8(3):108

    Google Scholar 

  54. Pandi N, Sonawane SH, Gumfekar SP, Kola AK, Borse PH, Ambade SB, Ashokkumar M (2019) Electrochemical performance of Starch-polyaniline nanocomposites synthesized by sonochemical process intensification. J Renew Mater 7(12):1279–1293

    Google Scholar 

  55. Paul EW, Ricco AJ, Wrighton MS (1985) Resistance of polyaniline films as a function of electrochemical potential and the fabrication of polyaniline-based microelectronic devices. J Phys Chem 89(8):1441–1447

    Google Scholar 

  56. Rao CN, Cheetham AK (2001) Science and technology of nanomaterials: current status and future prospects. J Mater Chem 11(12):2887–2894

    Google Scholar 

  57. Rohom A, Londhe P, Mahapatra SK, Kulkarni SK, Chaure NB (2014) Electropolymerization of polyaniline thin films. High Perform Polym 26:641–646

    Google Scholar 

  58. Sarangapan S, Tilak BV, Chen CP (1996) Review materials for electrochemical capacitors of theoretical and experimental consfraints. J Electrochem Soc 143(11):3791–3799

    Google Scholar 

  59. Sen P, De A, Chowdhury AD, Bandyopadhyay SK, Agnihotri N, Mukherjee M (2013) Conducting polymer based manganese dioxide nanocomposite as supercapacitor. Electrochim Acta 108:265–273

    Google Scholar 

  60. Sheng Q, Zhang D, Wu Q, Zheng J, Tang H (2015) Electrodeposition of Prussian blue nanoparticles on polyaniline coated halloysite nanotubes for nonenzymatic hydrogen peroxide sensing. Anal Methods 7(16):6896–6903

    Google Scholar 

  61. Sheppard CM, Mackenzie KJD (1999) Silicothermal synthesis and Densi ® cation of X-Sialon in the presence of metal oxide additives. J Eur Ceram Soc 19:535–541

    Google Scholar 

  62. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    Google Scholar 

  63. Sing KS (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57(4):603–619

    Google Scholar 

  64. Soheilmoghaddam M, Wahit MU (2013) Development of regenerated cellulose/halloysite nanotube bionanocomposite films. Int J Biol Macromol 58:133–139

    Google Scholar 

  65. Trchová M, Morávková Z, Bláha M, Stejskal J (2014) Electrochimica acta Raman spectroscopy of polyaniline and oligoaniline thin films. Electrochim Acta 122:28–38

    Google Scholar 

  66. Ullah R, Bilal S, Ali K (2014) Synthesis and characterization of polyaniline doped with Cu II chloride by inverse emulsion polymerization. Synth Met 198:113–117

    Google Scholar 

  67. Viswanathan A, Shetty AN (2017) Facile in-situ single step chemical synthesis of reduced graphene oxide-copper oxide-polyaniline nanocomposite and its electrochemical performance for supercapacitor application. Electrochim Acta 257:483–493

    Google Scholar 

  68. Wang F, Zhang X, Ma Y, Yang W (2018) Synthesis of HNTs @ PEDOT composites via in situ chemical oxidative polymerization and their application in electrode materials. Appl Surf Sci 427:1038–1045

    Google Scholar 

  69. Wilson IR (2004) Kaolin and halloysite deposits of China. Clay Miner 39:1–15

    Google Scholar 

  70. Yan J, Wang Q, Wei T, Fan Z (2014) Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv Energy Mater 4:1300816

    Google Scholar 

  71. Yang C, Liu P, Zhao Y (2010) Preparation and characterization of coaxial halloysite/polypyrrole tubular nanocomposites for electrochemical energy storage. Electrochim Acta 55:6857–6864

    Google Scholar 

  72. Yang Y, Xi Y, Li J, Wei G, Klyui NI, Han W (2017) Flexible supercapacitors based on polyaniline arrays coated graphene aerogel electrodes. Nanoscale Res Lett 12(1):1–9

    Google Scholar 

  73. Yuan P, Southon PD, Liu Z, Green ME, Hook JM, Antill SJ, Kepert CJ (2008) Functionalization of halloysite clay nanotubes by grafting with γ-aminopropyltriethoxysilane. J Phys Chem C 112(40):15742–15751

    Google Scholar 

  74. Zhang WL, Hyoung JC (2012) Fabrication of semiconducting polyaniline-wrapped halloysite nanotube composite and its electrorheology. Colloid Polym Sci 290:1743–1748

    Google Scholar 

  75. Zhang W, Mu B, Wang A (2015) Halloysite nanotubes template-induced fabrication of carbon/manganese dioxide hybrid nanotubes for supercapacitors. Ionics 21:2329–2336

    Google Scholar 

  76. Zhang Z, Cui Z, Qiao L, Guan J, Xu H, Wang X, Dong S (2017) Novel design concepts of efficient Mg-ion electrolytes toward high-performance magnesium-selenium and magnesium-sulfur batteries. Adv Energy Mater 7(11):1602055

    Google Scholar 

  77. Zhang Z, Dong S, Cui Z, Du A, Li G, Cui G (2018) Rechargeable magnesium batteries using conversion-type cathodes: a perspective and minireview. Small Methods 2(10):1800020

    Google Scholar 

  78. Zhao Y, Quan X, Li C (2019) Facile preparation of etched halloysite @ polyaniline nanorods and their enhanced electrochemical capacitance performance. Electrochim Acta 321:134715

    Google Scholar 

  79. Zheng H, Cheng H, Lu Z, Ye Y, Chen J (2016) Intercalated polyaniline/halloysite nanocomposites by a solvent-free mechanochemical method. NANO Brief Rep Rev 11:1–10

    Google Scholar 

  80. Zhi C, Bando Y, Tang C, Honda S, Sato K, Kuwahara H, Golberg D (2005) Covalent functionalization: towards soluble multiwalled boron nitride nanotubes. Angew Chem Int Ed 44:7932–7935

    Google Scholar 

  81. Zhou T, Li C, Jin H, Lian Y, Han W (2017) Effective adsorption/reduction of Cr(VI) oxyanion by halloysite@ polyaniline hybrid nanotubes. ACS Appl Mater Interfaces 9(7):6030–6043

    Google Scholar 

  82. Zhu H, Du M, Zou M, Xu C, Fu Y (2012) Green synthesis of Au nanoparticles immobilized on halloysite nanotubes for surface-enhanced Raman scattering substrates. Dalton Trans 41:10465–10471

    Google Scholar 

Download references

Acknowledegements

This work was supported by the Ministry of Human Resource Development (MHRD) through the Technical Education Quality Improvement Program (TEQIP), National Institute of Technology, Warangal (NITW).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shirish H. Sonawane.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pandi, N., Sonawane, S.H., Kola, A.K. et al. Halloysite nanotubes-based supercapacitor: preparation using sonochemical approach and its electrochemical performance. Energ. Ecol. Environ. (2020). https://doi.org/10.1007/s40974-020-00174-2

Download citation

Keywords

  • Halloysite nanotubes
  • Polyaniline
  • Ultrasound
  • Sonochemical synthesis
  • Supercapacitor
  • Electrochemical properties