Advertisement

Energy, Ecology and Environment

, Volume 3, Issue 3, pp 137–148 | Cite as

State of the art of polymeric nanoparticles as carrier systems with agricultural applications: a minireview

  • Mônica Pascoli
  • Patrícia Juliana Lopes-Oliveira
  • Leonardo Fernandes Fraceto
  • Amedea Barozzi Seabra
  • Halley Caixeta Oliveira
Original Article
  • 292 Downloads

Abstract

Polymeric nanoparticles have been developed as carrier systems for agrochemicals aimed at pest control and increased crop yields. This minireview summarizes the recent progress and challenges in the design and application of polymeric nanoparticles loaded with herbicides, fungicides, insecticides and plant growth regulators. The many advantages of these nanoagrochemicals are discussed including: (1) the availability, biocompatibility and biodegradability of many polymers, (2) the decreased impact on non-target organisms, (3) the protection of the active compounds against degradation, (4) their increased solubility, (5) modified release, and (6) an improved efficacy of the active ingredients. We also discuss the major gaps and obstacles in this area, such as the large-scale production of these systems and the need for investigations of the toxicity to non-target organisms.

Keywords

Agrochemicals Nanotechnology Pesticide Plant growth regulator Polymers 

Abbreviations

γ-PGA

Poly(γ-glutamic acid)

GA3

Gibberellic acid

LC50

Lethal concentration 50%

NO

Nitric oxide

PCA

Poly(citric acid)

PCL

Poly(epsilon-caprolactone)

PEG

Polyethylene glycol

PGA

Polyglutamic acid or polyglycolides

PGR

Plant growth regulators

PLGA

Poly(lactide-co-glycolides)

PVA

Poly(vinyl alcohol)

S-Nitroso-MSA

S-Nitroso-mercaptosuccinic acid

Notes

Acknowledgements

The authors would like to thank Coordination for the Improvement of Higher Education Personnel (PJLO) and São Paulo State Science Foundation (ABS, 2016/10347-6; LFF, 2015/15617-9; MO, 2015/17120-4). The authors also thank Proof-Reading-Service for the English revision of the text.

Compliance with ethical standards

Conflict of interest

On behalf of all author, the corresponding authors states that there is no conflict of interest.

References

  1. Albuquerque AF, Ribeiro JS, Kummrow F, Nogueira AJ, Montagner CC, Umbuzeiro GA (2016) Pesticides in Brazilian freshwaters: a critical review. Environ Sci Process Impacts 18:779–787.  https://doi.org/10.1039/c6em00268d CrossRefGoogle Scholar
  2. Bennett BL, Littlejohn L (2014) Review of new topical hemostatic dressings for combat casualty care. Mil Med 179:497–514.  https://doi.org/10.7205/MILMED-D-13-00199 CrossRefGoogle Scholar
  3. Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR (2016) Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res 33:2373–2387.  https://doi.org/10.1007/s11095-016-1958-5 CrossRefGoogle Scholar
  4. Campos EVR, de Oliveira JL, Fraceto LF (2014) Applications of controlled release systems for fungicides, herbicides, acaricides, nutrients, and plant growth hormones: a review. Adv Sci Eng Med 6:373–387.  https://doi.org/10.1166/asem.2014.1538 CrossRefGoogle Scholar
  5. Campos EVR, de Oliveira JL, da Silva CMG, Pascoli M, Pasquoto T, Lima R et al (2015) Polymeric and solid lipid nanoparticles for sustained release of carbendazim and tebuconazole in agricultural applications. Sci Rep.  https://doi.org/10.1038/srep13809 Google Scholar
  6. Campos EVR, de Oliveira JL, Pascoli M, de Lima R, Fraceto LF (2016) Neem oil and crop protection: from now to the future. Front Plant Sci.  https://doi.org/10.3389/fpls.2016.01494 Google Scholar
  7. Cardozo VF, Lancheros CA, Narciso AM, Valereto EC, Kobayashi RK, Seabra AB, Nakazato G (2014) Evaluation of antibacterial activity of nitric oxide-releasing polymeric particles against Staphylococcus aureus and Escherichia coli from bovine mastitis. Int J Pharm 473:20–29.  https://doi.org/10.1016/j.ijpharm.2014.06.051 CrossRefGoogle Scholar
  8. Chauhan N, Dilbaghi N, Gopal M, Kumar R, Kim KH, Kumar S (2017) Development of chitosan nanocapsules for the controlled release of hexaconazole. Int J Biol Macromol 97:616–624.  https://doi.org/10.1016/j.ijbiomac.2016.12.059 CrossRefGoogle Scholar
  9. Chen H, Yada R (2011) Nanotechnologies in agriculture: new tools for sustainable development. Trends Food Sci Technol 22:585–594.  https://doi.org/10.1016/j.tifs.2011.09.004 CrossRefGoogle Scholar
  10. Chhipa H (2017) Nanofertilizers and nanopesticides for agriculture. Environ Chem Lett 15:15–22.  https://doi.org/10.1007/s10311-016-0600-4 CrossRefGoogle Scholar
  11. Choudhary RC, Kumaraswamy RV, Kumari S, Sharma SS, Pal A, Raliya R, Biswas P, Saharan V (2017) Cu-chitosan nanoparticle boost defense responses and plant growth in maize (Zea mays L.). Sci Rep.  https://doi.org/10.1038/s41598-017-08571-0 Google Scholar
  12. Cicek S, Nadaroglu H (2015) The use of nanotechnology in the agriculture. Adv Nano Res 3:207–223.  https://doi.org/10.12989/anr.2015.3.4.207 CrossRefGoogle Scholar
  13. Eatemadi A, Daraee H, Karimkhanloo H, Kouhi M, Zarghami N, Akbarzadeh A, Abasi M, Hanifehpour Y, Joo SW (2014) Carbon nanotubes: properties, synthesis, purification, and medical applications. Nanoscale Res Lett 9:393.  https://doi.org/10.1186/1556-276X-9-393 CrossRefGoogle Scholar
  14. EC-European Commission (2011) Commission Recommendation of 18 October 2011 on the definition of nanomaterial. Off J Eur Union 275:38Google Scholar
  15. Elieh-Ali-Komi D, Hamblin MR (2016) Chitin and chitosan: production and application of versatile biomedical nanomaterials. Int J Adv Res 4:411Google Scholar
  16. FAO (2012) Food and Agriculture Organization of the United Nations. FAOSTAT. www.faostat.fao.org. Accessed 6 Oct 2017
  17. Forim MR, Costa ES, da Silva MF, Das GF, Fernandes JB, Mondego JM, BoiçaJunior AL (2013) Development of a new method to prepare nano-/microparticles loaded with extracts of Azadirachta indica, their characterization and use in controlling Plutella xylostella. J Agric Food Chem 61:9131–9139.  https://doi.org/10.1021/jf403187y CrossRefGoogle Scholar
  18. Gabriel Paulraj M, Ignacimuthu S, Gandhi MR, Shajahan A, Ganesan P, Packiam SM et al (2017) Comparative studies of tripolyphosphate and glutaraldehyde cross-linked chitosan-botanical pesticide nanoparticles and their agricultural applications. Int J Biol Macromol 104:1813–1819.  https://doi.org/10.1016/j.ijbiomac.2017.06.043 CrossRefGoogle Scholar
  19. Gogos A, Knauer K, Bucheli TD (2012) Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J Agric Food Chem 60:9781–9792.  https://doi.org/10.1021/jf302154y CrossRefGoogle Scholar
  20. González JW, Yeguerman C, Marcovecchio D, Delrieux C, Ferrero A, Band BF (2016) Evaluation of sublethal effects of polymer-based essential oils nanoformulation on the german cockroach. Ecotoxicol Environ Saf 130:11–18.  https://doi.org/10.1016/j.ecoenv.2016.03.045 CrossRefGoogle Scholar
  21. Grillo R, dos Santos NZP, Maruyama CR, Rosa AH, de Lima R, Fraceto LF (2012) Poly(epsilon-caprolactone) nanocapsules as carrier systems for herbicides: physico-chemical characterization and genotoxicity evaluation. J Hazard Mater 231:1–9.  https://doi.org/10.1016/j.jhazmat.2012.06.019 CrossRefGoogle Scholar
  22. Grillo R, Pereira AES, Nishisaka CS, de Lima R, Oehlke K, Greiner R, Fraceto LF (2014) Chitosan/tripolyphosphate nanoparticles loaded with paraquat herbicide: an environmentally safer alternative for weed control. J Hazard Mater 278:163–171.  https://doi.org/10.1016/j.jhazmat.2014.05.079 CrossRefGoogle Scholar
  23. Grillo R, Abhilash PC, Fraceto LF (2016) Nanotechnology applied to bio-encapsulation of pesticides. J Nanosci Nanotechnol 16:1231–1234.  https://doi.org/10.1166/jnn.2016.12332 CrossRefGoogle Scholar
  24. Hetzer M, Kee DD (2008) Wood/polymer/nanoclay composites, environmentally friendly sustainable technology: a review. Chem Eng Res Des 86:1083–1093.  https://doi.org/10.1016/j.cherd.2008.05.003 CrossRefGoogle Scholar
  25. Iavicoli I, Leso V, Beezhold DH, Shvedova AA (2017) Nanotechnology in agriculture: opportunities, toxicological implications, and occupational risks. Toxicol Appl Pharmacol 329:96–111.  https://doi.org/10.1016/j.taap.2017.05.025 CrossRefGoogle Scholar
  26. Ishaaya I, Kontsedalov S, Horowitz AR (2002) Emamectin, a novel insecticide for controlling field crop pests. Pest Manag Sci 58:1091–1095.  https://doi.org/10.1002/ps.535 CrossRefGoogle Scholar
  27. Kah M (2015) Nanopesticides and nanofertilizers: emerging contaminants or opportunities for risk mitigation? Front Chem 3:64.  https://doi.org/10.3389/fchem.2015.00064 CrossRefGoogle Scholar
  28. Kah M, Hofmann T (2014) Nanopesticide research: current trends and future priorities. Environ Int 63:224–235.  https://doi.org/10.1016/j.envint.2013.11.015 CrossRefGoogle Scholar
  29. Kashyap PL, Xiang X, Heiden P (2015) Chitosan nanoparticle based delivery systems for sustainable agriculture. Int J Biol Macromol 77:36–51.  https://doi.org/10.1016/j.ijbiomac.2015.02.039 CrossRefGoogle Scholar
  30. Khan FI, Rahman S, Queen A, Ahamad S, Ali S, Kim J et al (2017) Implications of molecular diversity of chitin and its derivatives. Appl Microbiol Biotechnol 101:3513–3536.  https://doi.org/10.1007/s00253-017-8229-1 CrossRefGoogle Scholar
  31. Kheiri A, Moosawi Jorf SA, Malihipour A, Saremi H, Nikkhah M (2016) Application of chitosan and chitosan nanoparticles for the control of Fusarium head blight of wheat (Fusarium graminearum) in vitro and greenhouse. Int J Biol Macromol 93:1261–1272.  https://doi.org/10.1016/j.ijbiomac.2016.09.072 CrossRefGoogle Scholar
  32. Kollarigowda RH (2017) Recent view on pectin-based polysaccharide nanoscience and their biological applications. Nano LIFE.  https://doi.org/10.1142/S1793984417300023 Google Scholar
  33. Kumar S, Bhanjana G, Sharma A, Dilbaghi N, Sidhu MC, Kim KH (2017a) Development of nanoformulation approaches for the control of weeds. Sci Total Environ 586:1272–1278CrossRefGoogle Scholar
  34. Kumar S, Kumar D, Dilbaghi N (2017b) Preparation, characterization, and bio-efficacy evaluation of controlled release carbendazim-loaded polymeric nanoparticles. Environ Sci Pollut Res 24:926–937.  https://doi.org/10.1007/s11356-016-7774-y CrossRefGoogle Scholar
  35. Lee BK, Yun YH, Park K (2015) Smart Nanoparticles for drug delivery: boundaries and opportunities. Chem Eng Sci 125:158–164.  https://doi.org/10.1016/j.ces.2014.06.042 CrossRefGoogle Scholar
  36. Lindquist EL, Mosher-Howe KN, Liu X (2010) Nanotechnology. What is it good for? (Absolutely everything): a problem definition approach. Rev Policy Res 27:255–271.  https://doi.org/10.1111/j.1541-1338.2010.00441.x CrossRefGoogle Scholar
  37. Liu Y, Sun Y, He S, Zhu Y, Ao M, Li J, Cao Y (2013) Synthesis and characterization of gibberellin–chitosan conjugate for controlled-release applications. Int J Biol Macromol 57:213–217.  https://doi.org/10.1016/j.ijbiomac.2013.03.024 CrossRefGoogle Scholar
  38. Luo Y, Wang Q (2014) Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery. Int J Biol Macromol 64:353–367.  https://doi.org/10.1016/j.ijbiomac.2013.12.017 CrossRefGoogle Scholar
  39. Malerba M, Cerana R (2016) Chitosan effects on plant systems. Int J Mol Sci 17:996.  https://doi.org/10.3390/ijms17070996 CrossRefGoogle Scholar
  40. Mallakpour S, Behranvand V (2016) Polymeric nanoparticles: recent development in synthesis and application. Express Polym Lett 10:895–913.  https://doi.org/10.3144/expresspolymlett.2016.84 CrossRefGoogle Scholar
  41. Maruyama CR, Guilger M, Pascoli M, Bileshy-José N, Abhilash PC, Fraceto LF, de Lima R (2016) Nanoparticles based on chitosan as carriers for the combined herbicides imazapic and imazapyr. Sci Rep 6:19768.  https://doi.org/10.1038/srep19768 CrossRefGoogle Scholar
  42. Memarizadeh N, Ghadamyari M, Adeli M, Talebi K (2014) Preparation, characterization and efficiency of nanoencapsulated imidacloprid under laboratory conditions. Ecotoxicol Environ Saf 107:77–83.  https://doi.org/10.1016/j.ecoenv.2014.05.009 CrossRefGoogle Scholar
  43. Mishra S, Keswani C, Abhilash PC, Fraceto LF, Singh HB (2017) Integrated approach of agri-nanotechnology: challenges and future trends. Front Plant Sci.  https://doi.org/10.3389/fpls.2017.00471 Google Scholar
  44. Mondal P, Kumar R, Gogoi R (2017) Azomethine based nano-chemicals: development, in vitro and in vivo fungicidal evaluation against Sclerotium rolfsii, Rhizoctonia bataticola and Rhizoctonia solani. Bioorg Chem 70:153–162.  https://doi.org/10.1016/j.bioorg.2016.12.006 CrossRefGoogle Scholar
  45. Nair R, Varghese SN, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163.  https://doi.org/10.1016/j.plantsci.2010.04.012 CrossRefGoogle Scholar
  46. Nambara E (2013) Plant hormones. In: Hughes SM (ed) Brenner’s encyclopedia of genetics. Academic Press, San Diego, pp 346–348.  https://doi.org/10.1016/B978-0-12-374984-0.01170-0 CrossRefGoogle Scholar
  47. Oliveira JL, Campos EVR, Bakshi M, Abilash PC, Fraceto LF (2014) Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: prospects and promises. Biotechnol Adv 32:1550–1561.  https://doi.org/10.1016/j.biotechadv.2014.10.010 CrossRefGoogle Scholar
  48. Oliveira HC, Stolf-Moreira R, Martinez CBR, Grillo R, de Jesus MB, Fraceto LF (2015a) Nanoencapsulation enhances the post-emergence herbicidal activity of atrazine against mustard plants. PLoS ONE 10(7):e0132971.  https://doi.org/10.1371/journal.pone.0132971 CrossRefGoogle Scholar
  49. Oliveira HC, Stolf-Moreira R, Martinez CBR, Sousa GFM, Grillo R, de Jesus MB, Fraceto LF (2015b) Evaluation of the side effects of poly(epsilon-caprolactone) nanocapsules containing atrazine toward maize plants. Front Chem 3:61.  https://doi.org/10.3389/fchem.2015.00061 CrossRefGoogle Scholar
  50. Oliveira HC, Gomes BCR, Pelegrino MT, Seabra AB (2016) Nitric oxide-releasing chitosan nanoparticles alleviate the effects of salt stress in maize plants. Nitric Oxide 61:10–19.  https://doi.org/10.1016/j.niox.2016.09.010 CrossRefGoogle Scholar
  51. Pasquoto-Stigliani T, Campos EVR, Oliveira JL, Silva CMG, Bilesky-José N, Guilger M et al (2017) Nanocapsules containing neem (Azadirachta indica) oil: development, characterization and toxicity evaluation. Sci Rep.  https://doi.org/10.1038/s41598-017-06092-4 Google Scholar
  52. Pelegrino TM, Seabra AB (2017) Chitosan-based nanomaterials for skin regeneration. AIMS Med Sci 4:352–381.  https://doi.org/10.3934/medsci.2017.3.352 CrossRefGoogle Scholar
  53. Pelegrino MT, Silva LC, Watashi CM, Haddad PS, Rodrigues T, Seabra AB (2017a) Nitric oxide-releasing nanoparticles: synthesis, characterization and cytotoxicity to tumorigenic cells. J Nanopart Res 19:57.  https://doi.org/10.1007/s11051-017-3747-4 CrossRefGoogle Scholar
  54. Pelegrino MT, Weller RB, Bernardes JS, Seabra AB (2017b) Chitosan nanoparticles for nitric oxide delivery in human skin. Med Chem Commun 8:713–719.  https://doi.org/10.1039/C6MD00502K CrossRefGoogle Scholar
  55. Pelegrino MT, Araújo DR, Seabra AB (2017c) S-Nitrosoglutathione-containing chitosan nanoparticles dispersed in Pluronic F-127 hydrogel: potential uses in topical applications. J Drug Deliv Sci Technol.  https://doi.org/10.1016/j.jddst.2017.10.016 Google Scholar
  56. Pereira AE, Grillo R, Mello NF, Rosa AH, Fraceto LF (2014) Application of poly(epsilon-caprolactone) nanoparticles containing atrazine herbicide as an alternative technique to control weeds and reduce damage to the environment. J Hazard Mater 268:207–215.  https://doi.org/10.1016/j.jhazmat.2014.01.025 CrossRefGoogle Scholar
  57. Pereira AES, Silva PM, Oliveira JL, Oliveira HC, Fraceto LF (2017a) Chitosan nanoparticles as carrier systems for the plant growth hormone gibberellic acid. Colloids Surf B Biointerfaces 150:141–152.  https://doi.org/10.1016/j.colsurfb.2016.11.027 CrossRefGoogle Scholar
  58. Pereira AES, Sandoval-Herrera IE, Zavala-Betancourt SA, Oliveira HC, Ledezma-Pérez AS, Romero J, Fraceto LF (2017b) γ-Polyglutamic acid/chitosan nanoparticles for the plant growth regulator gibberellic acid: characterization and evaluation of biological activity. Carbohydr Polym 157:1862–1873.  https://doi.org/10.1016/j.carbpol.2016.11.073 CrossRefGoogle Scholar
  59. Perez JJ, Francois NJ (2016) Chitosan-starch beads prepared by ionotropic gelation as potential matrices for controlled release of fertilizers. Carbohydr Polym 148:134–142.  https://doi.org/10.1016/j.carbpol.2016.04.054 CrossRefGoogle Scholar
  60. Pérez-de-Luque A (2017) Interaction of nanomaterials with plants: What do we need for real applications in agriculture? Front Environ Sci 5:12.  https://doi.org/10.3389/fenvs.2017.00012 CrossRefGoogle Scholar
  61. Pradhan S, Roy I, Lodh G, Patra P, Choudhury SR, Samanta A et al (2013) Entomotoxicity and biosafety assessment of PEGylated acephate nanoparticles: a biologically safe alternative to neurotoxic pesticides. J Environ Sci Health Part B 48:559–569.  https://doi.org/10.1080/03601234.2013.774891 CrossRefGoogle Scholar
  62. Quiñones JP, García YC, Curiel H, Covas CP (2010) Microspheres of chitosan for controlled delivery of brassinosteroids with biological activity as agrochemicals. Carbohydr Polym 80:915–921.  https://doi.org/10.1016/j.carbpol.2010.01.006 CrossRefGoogle Scholar
  63. Rademacher W (2015) Plant growth regulators: backgrounds and uses in plant production. J Plant Growth Regul 34:845–872.  https://doi.org/10.1007/s00344-015-9541-6 CrossRefGoogle Scholar
  64. Rao JP, Geckeler KE (2011) Polymer nanoparticles: preparation techniques and size-control parameters. Prog Polym Sci 36:887–913.  https://doi.org/10.1016/j.progpolymsci.2011.01.001 CrossRefGoogle Scholar
  65. Sabir S, Arshad M, Chaudhari SK (2014) Zinc oxide nanoparticles for revolutionizing agriculture: synthesis and applications. Sci World J.  https://doi.org/10.1155/2014/925494 Google Scholar
  66. Sabourin V (2015) Commercial opportunities and market demand for nanotechnologies in agribusiness sector. J Technol Manag Innov 10:40–51.  https://doi.org/10.4067/S0718-27242015000100004 CrossRefGoogle Scholar
  67. Sadeghi R, Rodriguez RJ, Yao Y, Kokini JL (2017) Advances in nanotechnology as they pertain to food and agriculture: benefits and risks. Annu Rev Food Sci Technol 8:467–492.  https://doi.org/10.1146/annurev-food-041715-033338 CrossRefGoogle Scholar
  68. Saharan V, Sharma G, Yadav M, Choudhary MK, Sharma SS, Pal A et al (2015) Synthesis and in vitro antifungal efficacy of Cu-chitosan nanoparticles against pathogenic fungi of tomato. Int J Biol Macromol 75:346–353.  https://doi.org/10.1016/j.ijbiomac.2015.01.027 CrossRefGoogle Scholar
  69. Sanchez-Mendieta V, Vilchis-Nestor A (2012) Green synthesis of noble metal (Au, Ag, Pt) nanoparticles, assisted by plantextracts. In: Yen-Hsun S (ed) Noble metals. INTECH, Rijeka, pp 391–408.  https://doi.org/10.5772/34335 Google Scholar
  70. Sandhya Kumar S, Kumar D, Dilbaghi N (2017) Preparation, characterization, and bio-efficacy evaluation of controlled release carbendazim-loaded polymeric nanoparticles. Environ Sci Pollut Res Int 24:926–937.  https://doi.org/10.1007/s11356-016-7774-y CrossRefGoogle Scholar
  71. Santos MA, Grenha A (2015) Polysaccharide nanoparticles for protein and peptide delivery: exploring less-known materials. Adv Protein Chem Struct Biol 98:223–261.  https://doi.org/10.1016/bs.apcsb.2014.11.003 CrossRefGoogle Scholar
  72. Seabra AB, Durán N (2015) Nanotoxicology of metal oxide nanoparticles. Metals 5:934–975.  https://doi.org/10.3390/met5020934 CrossRefGoogle Scholar
  73. Seabra BA, Durán N (2017) Nanoparticulated nitric oxide donors and their biomedical applications. Mini Rev Med Chem 17:216–223.  https://doi.org/10.2174/1389557516666160808124624 CrossRefGoogle Scholar
  74. Seabra AB, Kitice NA, Pelegrino MT, Lancheros CAC, Yamauchi LM, Pinge-Filho P, Yamada-Ogatta SF (2015) Nitric oxide-releasing polymeric nanoparticles against Trypanosoma cruzi. J Phys Conf Ser 617:012020.  https://doi.org/10.1088/1742-6596/617/1/012020 CrossRefGoogle Scholar
  75. Sekhon B (2014) Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appl.  https://doi.org/10.2147/NSA.S39406 Google Scholar
  76. Shang Q, Shi Y, Zhang Y, Zheng T, Shi H (2013) Pesticide-conjugated polyacrylate nanoparticles: novel opportunities for improving the photostability of emamectin benzoate: pesticide-conjugated polyacrylate nanoparticles. Polym Adv Technol 24:137–143.  https://doi.org/10.1002/pat.3060 CrossRefGoogle Scholar
  77. Sonzogni AS, Passeggi MCG, Wedepohl S, Calderon M, Gugliotta LM, Gonzalez VDG, Minari RJ (2018) Thermoresponsive nanogels with film-forming ability. Polym Chem 9:1004–1011.  https://doi.org/10.1039/c7py01798g CrossRefGoogle Scholar
  78. Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70:1–20.  https://doi.org/10.1016/S0168-3659(00)00339-4 CrossRefGoogle Scholar
  79. Spencer JL, Hughson SA, Levine E (2014) Insect resistance to crop rotation. In: Onstad DW (ed) Insect resistance management, 2nd edn. Academic Press, San Diego, pp 233–278.  https://doi.org/10.1016/B978-0-12-396955-2.00007-2 CrossRefGoogle Scholar
  80. Sun C, Shu K, Wang W, Ye Z, Liu T, Gao Y et al (2014) Encapsulation and controlled release of hydrophilic pesticide in shell cross-linked nanocapsules containing aqueous core. Int J Pharm 463:108–114.  https://doi.org/10.1016/j.ijpharm.2013.12.050 CrossRefGoogle Scholar
  81. Tao S, Pang R, Chen C, Ren X, Hu S (2012) Synthesis, characterization and slow release properties of O-naphthylacetyl chitosan. Carbohydr Polym 88:1189–1194.  https://doi.org/10.1016/j.carbpol.2012.01.076 CrossRefGoogle Scholar
  82. Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677.  https://doi.org/10.1038/nature01014 CrossRefGoogle Scholar
  83. Tong Y, Wu Y, Zhao C, Xu Y, Lu J, Xiang S et al (2017) Polymeric nanoparticles as a metolachlor carrier: water-based formulation for hydrophobic pesticides and absorption by plants. J Agric Food Chem 65:7371–7378.  https://doi.org/10.1021/acs.jafc.7b02197 CrossRefGoogle Scholar
  84. Tripathi DK, Shweta Singh S, Singh S, Pandey R, Singh VP, Sharma NC, Prasad SM, Dubey NK, Chauhan DK (2017) An overview on manufactured nanoparticles in plants: uptake, translocation, accumulation and phytotoxicity. Plant Physiol Biochem 110:2–12.  https://doi.org/10.1016/j.plaphy.2016.07.030 CrossRefGoogle Scholar
  85. Villasenor MJ, Ríos A (2018) Nanomaterials for water cleaning and desalination, energy production, disinfection, agriculture and green chemistry. Environ Chem Lett 16:11–34.  https://doi.org/10.1007/s10311-017-0656-9 CrossRefGoogle Scholar
  86. World Bank (2013) Growing Africa: unlocking the potential of agribusiness. AFTFP/AFTAI. World Bank, Washington, DCCrossRefGoogle Scholar
  87. Yang FL, Li XG, Zhu F, Lei CL (2009) Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J Agric Food Chem 57:10156–10162.  https://doi.org/10.1021/jf9023118 CrossRefGoogle Scholar
  88. Yu Z, Sun X, Song H, Wang W, Ye Z, Shi L, Ding K (2015) Glutathione-responsive carboxymethyl chitosan nanoparticles for controlled release of herbicides. Mater Sci Appl 6:591–604.  https://doi.org/10.4236/msa.2015.66062 Google Scholar

Copyright information

© Joint Center on Global Change and Earth System Science of the University of Maryland and Beijing Normal University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Mônica Pascoli
    • 1
  • Patrícia Juliana Lopes-Oliveira
    • 2
  • Leonardo Fernandes Fraceto
    • 1
  • Amedea Barozzi Seabra
    • 3
  • Halley Caixeta Oliveira
    • 2
  1. 1.Laboratory of Environmental Nanotechnology, Institute of Science and Technology of Sorocaba (ICTS)São Paulo State University (UNESP)SorocabaBrazil
  2. 2.Department of Animal and Plant BiologyUniversidade Estadual de Londrina (UEL)LondrinaBrazil
  3. 3.Center for Natural and Human SciencesUniversidade Federal do ABC (UFABC)Santo AndréBrazil

Personalised recommendations