Skip to main content
Log in

Protein oxidation in the fish Danio rerio (Cyprinidae) fed with single- and multi-walled carbon nanotubes

  • Original Research Article
  • Published:
Energy, Ecology and Environment Aims and scope Submit manuscript

Abstract

The increase in the production of carbon nanotubes (CNT) arises potential scenarios of exposure to these nanomaterials for several organisms including aquatic species. Experiments were conducted to determine the toxicity of single-walled (SWCNT) and multi-walled (MWCNT) carbon nanotubes to the fish Danio rerio (Cyprinidae) exposed to these CNT via diet (500 mg/kg) during 28 days. Induction of oxidative stress by CNT was evaluated through protein carbonyl groups (immunohistochemistry). Higher levels of carbonyl groups were registered in several organs (liver, brain, pancreas and muscle) of fish exposed to SWCNT and MWCNT. Overall, data indicate that CNT administered through diet can in fact induce toxicological responses in aquatic organisms as fish. The measurement of irreversible protein oxidative damage through immunohistochemistry seems to be a valuable tool for nanotoxicology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bernet D, Schmidt H, Meier W, Burkhardt-Holm P, Wahli T (1999) Histopathology in aquatic pollution fish: proposal for a protocol to assess. J Fish Dis 22:25–34

    Article  Google Scholar 

  • Bystrzejewska-Piotrowska G, Golimowski J, Urban OL (2009) Nanoparticles: their potential toxicity, waste and environmental management. Waste Manag 29:2587–2595

    Article  Google Scholar 

  • Carson FL, Hladik C (2009) Histotechnology: a self-instructional text. American Society for Clinical Pathology Press, Hong Kong

    Google Scholar 

  • Chen CM, Chen M, Leu F, Hsu SY, Wang SC, Shi SC (2004) Purification of multi-walled carbon nanotubes by microwave digestion method. Diam Relat Mater 13:1182–1186

    Article  Google Scholar 

  • Cheng J, Flahaut E, Cheng S (2007) Effect of carbon nanotubes on developing zebrafish (Danio rerio) embryos. Environ Toxicol Chem 26:708–716

    Article  Google Scholar 

  • Colvin VK (2003) The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21:1166–1170

    Article  Google Scholar 

  • da Rocha AM, Ferreira JR, Barros DM, Pereira TCB, Bogo MR, Oliveira S, Geraldo V, Lacerda RG, Ferlauto AS, Ladeira LO, Pinheiro MVB, Monserrat JM (2013) Gene expression and biochemical responses in brain of zebrafish Danio rerio exposed to organic nanomaterials: carbon nanotubes (SWCNT) and fullerenol (C60(OH)18–22(OK4)). Comp Biochem Physiol A 165:460–467

    Article  Google Scholar 

  • Fraser TWK, Reinardy HC, Shaw BJ, Henry TB, Handy RD (2011) Dietary toxicity of single-walled carbon nanotubes and fullerenes (C60) in rainbow trout (Oncorhynchus mykiss). Nanotoxicology 5:98–108

    Article  Google Scholar 

  • González-Durruthy M, Werhlo AV, Cornetet L, Machado KS, González-Díaz H, Wasiliesky W Jr, Pires Ruas C, Gelesky MA, Monserrat JM (2016) Predicting the binding properties of single walled carbon nanotubes (SWCNT) with an ADP/ATP mitochondrial carrier using molecular docking, chemoinformatics and nano-QSBR perturbation theory. RSC Adv 6:58680–58693

    Article  Google Scholar 

  • Halliwell B (1994) Free radicals, antioxidants, and human disease: curiosity, cause, or consequence? Lancet 344:721–724

    Article  Google Scholar 

  • Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine. Oxford University Press, New York

    Google Scholar 

  • Huczko A (2002) Synthesis of aligned carbon nanotubes. Appl Phys A 74:617–638

    Article  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  Google Scholar 

  • Jia G, Wang HH, Yan L, Wang X, Pei R, Yan T, Zhao Y, Guo X (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol 39:1378–1383

    Article  Google Scholar 

  • Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60 Buckminsterfullerene. Nature 318:162–163

    Article  Google Scholar 

  • Liu Y, Zhao Y, Sun B, Chen C (2013) Understanding the toxicity of carbon nanotubes. Acc Chem Res 46:702–713

    Article  Google Scholar 

  • Madani SY, Mandel A, Seifalian AM (2013) A concise review of carbon nanotube’s toxicology. Nano Rev 4:21521

    Article  Google Scholar 

  • Maultzsch J, Telg H, Reich S, Thomsen C (2005) Radial breathing mode of single-walled carbon nanotubes: optical transition energies and chiral-index assignment. Phys Rev B 72:205438

    Article  Google Scholar 

  • Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–883

    Article  MATH  Google Scholar 

  • Pacurari M, Yin X, Zhao J, Ding M, Leonard S, Schwegler-Berry D, Ducatman B, Sbarra D, Hoover M, Castranova V, Vallyathan V (2008) Raw single-wall carbon nanotubes induce oxidative stress and activate Mapks, AP-1, NF-Kappa b, and Akt in normal and malignant human mesothelial cells. Environ Health Perspect 116:1211–1217

    Article  Google Scholar 

  • Patlolla A, McGinnisb B, Tchounwouaj P (2011) Biochemical and histopathological evaluation of functionalized single-walled carbon nanotubes in Swiss-Webster mice. J Appl Toxicol 31:75–83

    Article  Google Scholar 

  • Pérez S, Farré M, Barceló D (2009) Analysis, behavior and ecotoxicity of carbon-based nanomaterials in the aquatic environment. Trends Anal Chem 28:820–832

    Article  Google Scholar 

  • Petersen EJ, Huang Q, Weber WJ Jr (2008) Ecological uptake and depuration of carbon nanotubes by Lumbriculus variegatus. Environ Health Perspect 116:496–500

    Google Scholar 

  • Petersen EJ, Akkanen J, Kukkonen JVK, Weber WJ Jr. (2009) Biological uptake and depuration of carbon nanotubes by Daphnia magna. Environ Sci Technol 43:2969–2975

    Article  Google Scholar 

  • Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WAH, Seaton A, Stone V, Brown S, Macnee W, Donaldson K (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3:423–428

    Article  Google Scholar 

  • Roberts AP, Mount AS, Seda B, Souther J, Quio R, Lin S, Ke PC, Rao AM, Klaine SJ (2007) In vivo biomodification of lipid-coated carbon nanotubes by Daphnia magna. Environ Sci Technol 41:3025–3029

    Article  Google Scholar 

  • Saito R, Gruneis A, Samsonidze GeG, Brarr VW, Dresselhaus G, Jorio A, Cançado LG, Fantini C, Pimenta MA, Souza Filho AG (2003) Double resonance Raman spectroscopy of single-wall carbono nanotubes. New J. Phys 5:157.1–157.15

    Article  Google Scholar 

  • Scott-Fordsmand JJ, Krogh PH, Schaefer M, Johansen A (2008) The toxicity testing of double-walled nanotubes-contaminated food to Eisenia veneta earthworms. Ecotoxicol Environ Saf 71:616–619

    Article  Google Scholar 

  • Smith CJ, Shaw BJ, Handy RD (2007) Toxicity of single walled carbon nanotubes to rainbow trout (Oncorhynchus mykiss): respiratory toxicity, organ pathologies, and other physiological effects. Aquat Toxicol 82:94–109

    Article  Google Scholar 

  • Stadtman ER (1993) Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal catalyzed reactions. Ann Rev Biochem 62:797–821

    Article  Google Scholar 

  • Templeton RC, Ferguson PL, Washburn KM, Scrivens WA, Chandler GT (2006) Life-cycle effects of single-walled carbon nanotubes (SWNTs) on an estuarine meiobenthic copepod. Environ Sci Technol 40:7387–7393

    Article  Google Scholar 

  • Tsukahara T, Haniu H (2011) Cellular cytotoxic response induced by highly purified multi-wall carbon nanotube in human lung cells. Mol Cell Biochem 352:57–63

    Article  Google Scholar 

  • Velzeboer I, Kupryianchyk D, Peeters ETHM, Koelmans AA (2011) Community effects of carbon nanotubes in aquatic sediments. Environ Int 37:1126–1130

    Article  Google Scholar 

  • Zar JH (1999) Biostatistical analysis. Prentice-Hall, Prentice

    Google Scholar 

Download references

Acknowledgements

André L. da R. Seixas received a graduate fellowship from Instituto Nacional de Ciência e Tecnologia de Nanomateriais de Carbono (MCTI/CNPq). Marlize Ferreira-Cravo received a post doc fellowship from FAPERGS/CAPES. Ana C. Kalb received a post doc fellowship from CAPES. José M. Monserrat is a research fellow from CNPq (Process No. 307880/2013-3). The authors would like to thank the laboratory technicians working at the Instituto de Ciências Biológicas (ICB) FURG and at the Laboratório de Materiais Cerâmicos (LACER), Universidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre, RS and the undergraduate students Lennon Flores Brongar and Astaruth Nayara Vicente. The logistic and material support from the Nanotoxicology Network (MCTI/CNPq, Proc. 552131/2011-3) was essential for the execution of present study. The support from CNPq (Universal Project No. 479053/2012-0) given to José M. Monserrat is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. Monserrat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seixas, A.L.R., Ferreira-Cravo, M., Kalb, A.C. et al. Protein oxidation in the fish Danio rerio (Cyprinidae) fed with single- and multi-walled carbon nanotubes. Energ. Ecol. Environ. 3, 95–101 (2018). https://doi.org/10.1007/s40974-017-0080-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40974-017-0080-9

Keywords

Navigation