Energy, Ecology and Environment

, Volume 3, Issue 2, pp 95–101 | Cite as

Protein oxidation in the fish Danio rerio (Cyprinidae) fed with single- and multi-walled carbon nanotubes

  • André L. R. Seixas
  • Marlize Ferreira-Cravo
  • Ana C. Kalb
  • Luis A. Romano
  • Claudir G. J. R. Kaufmann
  • José M. Monserrat
Original Research Article


The increase in the production of carbon nanotubes (CNT) arises potential scenarios of exposure to these nanomaterials for several organisms including aquatic species. Experiments were conducted to determine the toxicity of single-walled (SWCNT) and multi-walled (MWCNT) carbon nanotubes to the fish Danio rerio (Cyprinidae) exposed to these CNT via diet (500 mg/kg) during 28 days. Induction of oxidative stress by CNT was evaluated through protein carbonyl groups (immunohistochemistry). Higher levels of carbonyl groups were registered in several organs (liver, brain, pancreas and muscle) of fish exposed to SWCNT and MWCNT. Overall, data indicate that CNT administered through diet can in fact induce toxicological responses in aquatic organisms as fish. The measurement of irreversible protein oxidative damage through immunohistochemistry seems to be a valuable tool for nanotoxicology.


Nanotoxicology Protein carbonyl groups Nanotechnology Oxidative damage Protein oxidation 



André L. da R. Seixas received a graduate fellowship from Instituto Nacional de Ciência e Tecnologia de Nanomateriais de Carbono (MCTI/CNPq). Marlize Ferreira-Cravo received a post doc fellowship from FAPERGS/CAPES. Ana C. Kalb received a post doc fellowship from CAPES. José M. Monserrat is a research fellow from CNPq (Process No. 307880/2013-3). The authors would like to thank the laboratory technicians working at the Instituto de Ciências Biológicas (ICB) FURG and at the Laboratório de Materiais Cerâmicos (LACER), Universidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre, RS and the undergraduate students Lennon Flores Brongar and Astaruth Nayara Vicente. The logistic and material support from the Nanotoxicology Network (MCTI/CNPq, Proc. 552131/2011-3) was essential for the execution of present study. The support from CNPq (Universal Project No. 479053/2012-0) given to José M. Monserrat is also acknowledged.


  1. Bernet D, Schmidt H, Meier W, Burkhardt-Holm P, Wahli T (1999) Histopathology in aquatic pollution fish: proposal for a protocol to assess. J Fish Dis 22:25–34CrossRefGoogle Scholar
  2. Bystrzejewska-Piotrowska G, Golimowski J, Urban OL (2009) Nanoparticles: their potential toxicity, waste and environmental management. Waste Manag 29:2587–2595CrossRefGoogle Scholar
  3. Carson FL, Hladik C (2009) Histotechnology: a self-instructional text. American Society for Clinical Pathology Press, Hong KongGoogle Scholar
  4. Chen CM, Chen M, Leu F, Hsu SY, Wang SC, Shi SC (2004) Purification of multi-walled carbon nanotubes by microwave digestion method. Diam Relat Mater 13:1182–1186CrossRefGoogle Scholar
  5. Cheng J, Flahaut E, Cheng S (2007) Effect of carbon nanotubes on developing zebrafish (Danio rerio) embryos. Environ Toxicol Chem 26:708–716CrossRefGoogle Scholar
  6. Colvin VK (2003) The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21:1166–1170CrossRefGoogle Scholar
  7. da Rocha AM, Ferreira JR, Barros DM, Pereira TCB, Bogo MR, Oliveira S, Geraldo V, Lacerda RG, Ferlauto AS, Ladeira LO, Pinheiro MVB, Monserrat JM (2013) Gene expression and biochemical responses in brain of zebrafish Danio rerio exposed to organic nanomaterials: carbon nanotubes (SWCNT) and fullerenol (C60(OH)18–22(OK4)). Comp Biochem Physiol A 165:460–467CrossRefGoogle Scholar
  8. Fraser TWK, Reinardy HC, Shaw BJ, Henry TB, Handy RD (2011) Dietary toxicity of single-walled carbon nanotubes and fullerenes (C60) in rainbow trout (Oncorhynchus mykiss). Nanotoxicology 5:98–108CrossRefGoogle Scholar
  9. González-Durruthy M, Werhlo AV, Cornetet L, Machado KS, González-Díaz H, Wasiliesky W Jr, Pires Ruas C, Gelesky MA, Monserrat JM (2016) Predicting the binding properties of single walled carbon nanotubes (SWCNT) with an ADP/ATP mitochondrial carrier using molecular docking, chemoinformatics and nano-QSBR perturbation theory. RSC Adv 6:58680–58693CrossRefGoogle Scholar
  10. Halliwell B (1994) Free radicals, antioxidants, and human disease: curiosity, cause, or consequence? Lancet 344:721–724CrossRefGoogle Scholar
  11. Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine. Oxford University Press, New YorkGoogle Scholar
  12. Huczko A (2002) Synthesis of aligned carbon nanotubes. Appl Phys A 74:617–638CrossRefGoogle Scholar
  13. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRefGoogle Scholar
  14. Jia G, Wang HH, Yan L, Wang X, Pei R, Yan T, Zhao Y, Guo X (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol 39:1378–1383CrossRefGoogle Scholar
  15. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60 Buckminsterfullerene. Nature 318:162–163CrossRefGoogle Scholar
  16. Liu Y, Zhao Y, Sun B, Chen C (2013) Understanding the toxicity of carbon nanotubes. Acc Chem Res 46:702–713CrossRefGoogle Scholar
  17. Madani SY, Mandel A, Seifalian AM (2013) A concise review of carbon nanotube’s toxicology. Nano Rev 4:21521CrossRefGoogle Scholar
  18. Maultzsch J, Telg H, Reich S, Thomsen C (2005) Radial breathing mode of single-walled carbon nanotubes: optical transition energies and chiral-index assignment. Phys Rev B 72:205438CrossRefGoogle Scholar
  19. Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–883CrossRefzbMATHGoogle Scholar
  20. Pacurari M, Yin X, Zhao J, Ding M, Leonard S, Schwegler-Berry D, Ducatman B, Sbarra D, Hoover M, Castranova V, Vallyathan V (2008) Raw single-wall carbon nanotubes induce oxidative stress and activate Mapks, AP-1, NF-Kappa b, and Akt in normal and malignant human mesothelial cells. Environ Health Perspect 116:1211–1217CrossRefGoogle Scholar
  21. Patlolla A, McGinnisb B, Tchounwouaj P (2011) Biochemical and histopathological evaluation of functionalized single-walled carbon nanotubes in Swiss-Webster mice. J Appl Toxicol 31:75–83CrossRefGoogle Scholar
  22. Pérez S, Farré M, Barceló D (2009) Analysis, behavior and ecotoxicity of carbon-based nanomaterials in the aquatic environment. Trends Anal Chem 28:820–832CrossRefGoogle Scholar
  23. Petersen EJ, Huang Q, Weber WJ Jr (2008) Ecological uptake and depuration of carbon nanotubes by Lumbriculus variegatus. Environ Health Perspect 116:496–500Google Scholar
  24. Petersen EJ, Akkanen J, Kukkonen JVK, Weber WJ Jr. (2009) Biological uptake and depuration of carbon nanotubes by Daphnia magna. Environ Sci Technol 43:2969–2975CrossRefGoogle Scholar
  25. Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WAH, Seaton A, Stone V, Brown S, Macnee W, Donaldson K (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3:423–428CrossRefGoogle Scholar
  26. Roberts AP, Mount AS, Seda B, Souther J, Quio R, Lin S, Ke PC, Rao AM, Klaine SJ (2007) In vivo biomodification of lipid-coated carbon nanotubes by Daphnia magna. Environ Sci Technol 41:3025–3029CrossRefGoogle Scholar
  27. Saito R, Gruneis A, Samsonidze GeG, Brarr VW, Dresselhaus G, Jorio A, Cançado LG, Fantini C, Pimenta MA, Souza Filho AG (2003) Double resonance Raman spectroscopy of single-wall carbono nanotubes. New J. Phys 5:157.1–157.15CrossRefGoogle Scholar
  28. Scott-Fordsmand JJ, Krogh PH, Schaefer M, Johansen A (2008) The toxicity testing of double-walled nanotubes-contaminated food to Eisenia veneta earthworms. Ecotoxicol Environ Saf 71:616–619CrossRefGoogle Scholar
  29. Smith CJ, Shaw BJ, Handy RD (2007) Toxicity of single walled carbon nanotubes to rainbow trout (Oncorhynchus mykiss): respiratory toxicity, organ pathologies, and other physiological effects. Aquat Toxicol 82:94–109CrossRefGoogle Scholar
  30. Stadtman ER (1993) Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal catalyzed reactions. Ann Rev Biochem 62:797–821CrossRefGoogle Scholar
  31. Templeton RC, Ferguson PL, Washburn KM, Scrivens WA, Chandler GT (2006) Life-cycle effects of single-walled carbon nanotubes (SWNTs) on an estuarine meiobenthic copepod. Environ Sci Technol 40:7387–7393CrossRefGoogle Scholar
  32. Tsukahara T, Haniu H (2011) Cellular cytotoxic response induced by highly purified multi-wall carbon nanotube in human lung cells. Mol Cell Biochem 352:57–63CrossRefGoogle Scholar
  33. Velzeboer I, Kupryianchyk D, Peeters ETHM, Koelmans AA (2011) Community effects of carbon nanotubes in aquatic sediments. Environ Int 37:1126–1130CrossRefGoogle Scholar
  34. Zar JH (1999) Biostatistical analysis. Prentice-Hall, PrenticeGoogle Scholar

Copyright information

© Joint Center on Global Change and Earth System Science of the University of Maryland and Beijing Normal University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de Ciências Biológicas (ICB)Universidade Federal do Rio Grande, FURGRio GrandeBrazil
  2. 2.Programa de Pós-Graduação em Ciências Fisiológicas, Fisiologia Animal ComparadaICB-FURGRio GrandeBrazil
  3. 3.Instituto Nacional de Ciência e Tecnologia em Nanomateriais de Carbono (CNPq)Belo HorizonteBrazil
  4. 4.Rede de Nanotoxicologia (MCTI/CNPq)Belo HorizonteBrazil
  5. 5.Instituto de Oceanografia (IO)Universidade Federal do Rio Grande, FURGRio GrandeBrazil
  6. 6.Laboratório de Materiais Cerâmicos (LACER), Departamento de Materiais (DEMAT)Universidade Federal do Rio Grande do Sul, UFRGSPorto AlegreBrazil

Personalised recommendations