Advertisement

Energy, Ecology and Environment

, Volume 3, Issue 2, pp 81–86 | Cite as

Cyclodextrins as effective tools to reduce the toxicity of atrazine

  • Adneia de Fátima Abreu Venceslau
  • Fabio Eduardo dos Santos
  • Aline de Fátima Silva
  • Denise Alvarenga Rocha
  • Ademir José de Abreu
  • Carlos Jaime
  • Larissa Fonseca Andrade-Vieira
  • Luciana de Matos Alves Pinto
Original Article

Abstract

Atrazine (ATZ) is an agrochemical that is still widely used in the Americas to control intrusive weeds in large monocultures. However, its intrinsic toxicity can cause diseases of the endocrine and nervous systems. Cyclodextrins (CDs) are molecular carriers that can be employed to reduce the toxicity of ATZ. In this work, CDs (α, β, and γ) were anchored on silica, forming a hybrid material (CDSI). Lettuce (Lactuca sativa) was used as a model organism to evaluate the toxicity of the following treatments: ATZ; ATZ/α-CD; ATZ/β-CD; ATZ/γ-CD; ATZ/α-CDSI; ATZ/β-CDSI; and ATZ/γ-CDSI. The greatest chromosomal aberrations (CA) and nuclear abnormalities (NA) in the lettuce were observed with non-complexed ATZ. Reductions of CA ranged from 21% for ATZ/α-CD to 59% for ATZ/γ-CDSI, compared to non-complexed ATZ. In the case of NA, the decreases ranged from 29% for ATZ/β-CDSI to 68% for ATZ/α-CD, compared to non-complexed ATZ. The new synthesized CDSI material was found to be a viable option for reducing the toxicity of atrazine herbicide.

Graphical Abstract

Keywords

Herbicide Hybrid material Cyclodextrins Inclusion complex Cytotoxicity 

Notes

Acknowledgements

The authors thank the Cytogenetics Laboratory of DBI/UFLA for providing access to the analytical equipment. Financial support was provided by FAPEMIG (#APQ-00687-13) and CAPES (Science without Frontiers Program, #A107/2013). A.F.A.V. received a grant from CAPES to undertake this work.

References

  1. Abarikwu SO, Farombi EO (2015) Atrazine induces apoptosis of SH-SY5Y human neuroblastoma cells via the regulation of Bax/Bcl-2 ratio and caspase-3-dependent pathway. Pestic Biochem Physiol 118:90–98. doi: 10.1016/j.pestbp.2014.12.006 CrossRefGoogle Scholar
  2. Abarikwu SO, Pant AB, Farombi EO (2012) The protective effects of quercetin on the cytotoxicity of atrazine on rat Sertoli-germ cell co-culture. Int J Androl 35:590–600. doi: 10.1111/j.1365-2605.2011.01239.x CrossRefGoogle Scholar
  3. Andrade LF, Davide LC, Gedraite LS (2010) The effect of cyanide compounds, fluorides, aluminum, and inorganic oxides present in spent pot-liner on germination and root tip cells of Lactuca sativa. Ecotoxicol Environ Saf 73:626–631. doi: 10.1016/j.ecoenv.2009.12.012 CrossRefGoogle Scholar
  4. Andrade-Vieira LF, Gedraite LS, Campos JMS, Davide LC (2011) Spent Pot Liner (SPL) induced DNA damage and nuclear alterations in root tip cells of Allium cepa as a consequence of programmed cell death. Ecotoxicol Environ Saf 74:882–888. doi: 10.1016/j.ecoenv.2010.12.010 CrossRefGoogle Scholar
  5. Andrade-Vieira LF, de Campos JMS, Davide LC (2012) Effects of Spent Pot Liner on mitotic activity and nuclear DNA content in meristematic cells of Allium cepa. J Environ Manag 107:140–146. doi: 10.1016/j.jenvman.2012.04.008 CrossRefGoogle Scholar
  6. Andrade-Vieira LF, Botelho CM, Palmieri MJ, Laviola BG, Praça-Fontes MM (2014) Effects of Jatropha curcas oil in Lactuca sativa root tip bioassays. An Acad Bras Ciên 86:373–382CrossRefGoogle Scholar
  7. Aragão FB, Andrade-Vieira LF, Ferreira A, Costa AV, Queiroz VT, Pinheiro PF (2015) Phytotoxic and cytotoxic effects of Eucalyptus essential oil on Lactuca sativa L. Allelopathy J 35:259–272Google Scholar
  8. Baracho RV, Carvalho LB, Andrade JM, Venceslau AFA, Rocha DA, Pinto LMA (2015) Obtenção e caracterização de material híbrido entre sílica e ciclodextrinas. Quím Nova 38:1063–1067. doi: 10.5935/0100-4042.20150099 Google Scholar
  9. Carvalho LB, Pinto LMA (2012) Formation of inclusion complexes and controlled release of atrazine using free or silica-anchored β-cyclodextrin. J Incl Phenom Macrocycl Chem 74:375–381. doi: 10.1007/s10847-012-0125-9 CrossRefGoogle Scholar
  10. Carvalho LB, Carvalho TG, Magriotis ZM, Ramalho TC, Pinto LMA (2014) Cyclodextrin/silica hybrid adsorbent for removal of methylene blue in aqueous media. J Incl Phenom Macrocycl Chem 78:77–87. doi: 10.1007/s10847-012-0272-z CrossRefGoogle Scholar
  11. Cavas T (2011) In vivo genotoxicity evaluation of atrazine and atrazine-based herbicide on fish Carassius auratus using the micronucleus test and the comet assay. Food Chem Toxicol 49:1431–1435. doi: 10.1016/j.fct.2011.03.038 CrossRefGoogle Scholar
  12. Crini G (2014) Review: a history of cyclodextrins. Chem Rev 114:10940–10975. doi: 10.1021/cr500081p CrossRefGoogle Scholar
  13. El-Ghamery AA, El-Kholy MA, El-Yousser MAA (2003) Evaluation of cytological effects of Zn2+ in relation to germination and root growth of Nigella sativa L. and Triticum aestivum L. Mutat Res 537:29–41. doi: 10.1016/S1383-718(03)00052-4 CrossRefGoogle Scholar
  14. European Commission (2004) Commission decision of 10 March 2004 concerning the non-inclusion of atrazine in Annex I to Council Directive 91/414/EEC and the withdrawal of authorisations for plant protection products containing this active substance, 2004/248/EC. OJEU L78:53–55Google Scholar
  15. Fakhouri WD, Nuñez JL, Trail F (2010) Atrazine binds to the growth hormone-releasing hormone receptor and affects growth hormone gene expression. Environ Health Perspect 118:1400–1405. doi: 10.1289/ehp.0900738 CrossRefGoogle Scholar
  16. Faraji H (2005) β-Cyclodextrin-bonded silica particles as the solid-phase extraction medium for the determination of phenol compounds in water samples followed by gas chromatography with flame ionization and mass spectrometry detection. J Chromatogr 1087:283–288. doi: 10.1016/j.chroma.2005.06.009 CrossRefGoogle Scholar
  17. Fernandes TCC, Mazzeo DEC, Marin-Morales MA (2007) Mechanism of micronuclei formation in polyploidizated cells of Allium cepa exposed to trifluralin herbicide. Pestic Biochem Physiol 88:252–259. doi: 10.1016/j.pestbp.2006.12.003 CrossRefGoogle Scholar
  18. Fiskesjö G (1993) The Allium test—a potential standard for the assessment of environmental toxicity. Am Soc Test Mater 2:331–345Google Scholar
  19. Grant WF (1999) Higher plant assays for the detection of chromosomal aberrations and gene mutations a brief historical background on their use for screening and monitoring environmental chemicals. Mutat Res 624:107–112CrossRefGoogle Scholar
  20. Grillo R, Melo NFS, Lima R, Lourenço RW, Rosa AH, Fraceto LF (2010) Characterization of atrazine-loaded biodegradable poly(hydroxybutyrate-co-hydroxyvalerate) microspheres. J Polym Environ 18:26–32. doi: 10.1007/s10924-009-0153-8 CrossRefGoogle Scholar
  21. Grillo R, Santos NZP, Maruyamac CR, Rosa AH, Lima R, Fraceto LF (2012) Poly (ε-caprolactone) nanocapsules as carrier systems for herbicides: physico-chemical characterization and genotoxicity evaluation. J Hazard Mater 231:1–9. doi: 10.1016/j.jhazmat.2012.06.019 CrossRefGoogle Scholar
  22. Hartung T (2009) Toxicology for the twenty-first century. Nature 460(9):208–212. doi: 10.1038/460208a CrossRefGoogle Scholar
  23. LeBaron HM, McFarland JE, Burnside OC (2008) The triazine herbicides: a milestone in the development of weed control technology. In: LeBaron HM, McFarland JE, Burnside OC (eds) The triazine herbicides: 50 years revolutionizing agriculture. Elsevier, Amsterdam, pp 1–12Google Scholar
  24. Markovic M, Cupac S, Durovic R, Milinovic J, Kljajic P (2010) Assessment of heavy metal and pesticide levels in soil and plant products from agricultural area of Belgrade, Serbia. Arch Environ Contam Toxicol 58:341–351. doi: 10.1007/s00244-009-9359-y CrossRefGoogle Scholar
  25. Mauro MO, Pesarini JR, Marin-Morales MA, Monreal MTFD, Monreal ACD, Mantovani MS, Oliveira RJ (2014) Evaluation of the antimutagenic activity and mode of action of the fructooligosaccharide inulin in the meristematic cells of Allium cepa culture. Genet Mol Res 13(3):4808–4819CrossRefGoogle Scholar
  26. Organization for Economic Cooperation and Development – OECD (2003) Terrestrial plant test: 208: seedling emergence and seedling growth test. Guideline for the testing of chemicals proposal for updating guideline 208Google Scholar
  27. Palmieri MJ, Luber J, Andrade-Vieira LF, Davide LC (2014) Cytotoxic and phytotoxic effects of the main chemical components of spent pot-liner: a comparative approach. Mutat Res Genet Toxicol Environ Mutagen 763:30–35. doi: 10.1016/j.mrgentox.2013.12.008 CrossRefGoogle Scholar
  28. Palmieri MJ, Andrade-Vieira LF, Campos JMS, Gedraite LS, Davide LC (2016) Cytotoxicity of Spent Pot Liner on Allium cepa root tip cells: a comparative analysis in meristematic cell type on toxicity bioassays. Ecotoxicol Environ Saf 133:442–447. doi: 10.1016/j.ecoenv.2016.07.016 CrossRefGoogle Scholar
  29. Pereira AE, Grillo R, Mello NF, Rosa AH, Fraceto LF (2014) Application of poly (epsilon-caprolactone) nanoparticles containing atrazine herbicide as an alternative technique to control weeds and reduce damage to the environment. J Hazar Mater 268:207–215. doi: 10.1016/j.jhazmat.2014.01.025 CrossRefGoogle Scholar
  30. Rajkovic V, Kovac R, Koledin I, Matavulj M (2014) Atrazine-induced changes in the myocardial structure of peripubertal rats. Toxicol Ind Health 30–3:250–258. doi: 10.1177/0748233712456058 CrossRefGoogle Scholar
  31. Srivastava K, Mishra KK (2009) Cytogenetic effects of commercially formulated atrazine on the somatic cells of Allium cepa and Vicia faba. Pestic Biochem Physiol 93:8–12. doi: 10.1016/j.pestbp.2008.08.001 CrossRefGoogle Scholar
  32. United States Environmental Protection Agency – US EPA (1996) How to effectively recover free product at leaking underground storage tank sites—a guide for state regulators. EPA, WashingtonGoogle Scholar
  33. Valerio ME, Garcia JF, Peinado FM (2007) Determination of phytotoxicity of soluble elements in soils, based on a bioassay with lettuce (Lactuca sativa L.). Sci Total Environ 378:63–66. doi: 10.1016/j.scitotenv.2007.01.007 CrossRefGoogle Scholar
  34. Zhang J, Ma PX (2013) Cyclodextrin-based supramolecular systems for drug delivery: recent progress and future perspective. Adv Drug Deliv Rev 65(9):1215–1233. doi: 10.1016/j.addr.2013.05.001 CrossRefGoogle Scholar

Copyright information

© Joint Center on Global Change and Earth System Science of the University of Maryland and Beijing Normal University and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Adneia de Fátima Abreu Venceslau
    • 1
  • Fabio Eduardo dos Santos
    • 2
  • Aline de Fátima Silva
    • 1
  • Denise Alvarenga Rocha
    • 1
  • Ademir José de Abreu
    • 3
  • Carlos Jaime
    • 1
    • 4
  • Larissa Fonseca Andrade-Vieira
    • 2
  • Luciana de Matos Alves Pinto
    • 1
  1. 1.Department of ChemistryFederal University of Lavras (UFLA)LavrasBrazil
  2. 2.Department of BiologyFederal University of Lavras (UFLA)LavrasBrazil
  3. 3.Department of AdministrationFaculty of Sciences and Technology of Campos Gerais (FACICA)Campos GeraisBrazil
  4. 4.Department of ChemistryUniversitat Autònoma de Barcelona (UAB)BarcelonaSpain

Personalised recommendations