Research on the Effect of Sr and Zr on Microstructure and Properties of Mg–4Zn Alloy

Abstract

In this study, the effects of Zr and Sr on the microstructure, tensile properties and in vitro biocorrosion behavior of Mg–4Zn alloy were investigated. The results show that the grain size of Mg–4Zn alloy is refined by adding Zr or Sr elements, but the tensile properties of Mg–4Zn alloy with Zr element are improved, while those with Sr element are decreased. Grains of Mg–4Zn–0.3Zr become uniform and the average grain size is 91 μm. The yield strength, tensile strength and elongation of Mg–4Zn–0.3Zr alloy are 95 ± 2.1 MPa, 188 ± 1.5 MPa and 15.00 ± 0.3%, respectively. The average grain size of Mg–4Zn–0.5Sr alloy is only 80 μm, but Mg17Sr2 phases precipitate at the grain boundary, which causes a decrease in mechanical properties. The yield strength, tensile strength and elongation of Mg–4Zn–0.5Sr alloy are 82 MPa, 161 MPa and 10.30%, respectively. After hot extrusion, the grain is obviously refined, and the broken second phases are dispersed in the matrix. The yield strength, tensile strength and elongation of as-extruded Mg–4Zn–0.5Sr alloy increase to 207 ± 3.2 MPa, 252 ± 3.0 MPa and 18.81 ± 0.3%, while the tensile properties of the as-extruded Mg–4Zn–0.3Zr alloy are slightly lower. The immersion tests and electrochemical measurements show that the corrosion resistance of the as-extruded alloys is better than that of the as-cast alloys. As-extruded Mg–4Zn–0.3Zr alloy has the best corrosion resistance, the average corrosion rate is 0.3453 ± 0.009 mm/year by the immersion test, and the current density is 9.71 μA/cm2.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5.
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18

References

  1. 1.

    W. Wenke, M. Limin, C. Shaochun et al., Role of one direction strong texture in stretch formability for ZK60 magnesium alloy sheet. Mater. Sci. Eng. A-Struct. 730, 162–167 (2018). https://doi.org/10.1016/j.msea.2018.05.113

    CAS  Article  Google Scholar 

  2. 2.

    V. Angelini, L. Ceschini, A. Morri et al., Influence of heat treatment on microstructure and mechanical properties of rare earth-rich magnesium alloy. Inter Metalcast 11, 382–395 (2017). https://doi.org/10.1007/s40962-016-0070-2

    Article  Google Scholar 

  3. 3.

    A. Incesu, A. Gungor, Biocorrosion and mechanical properties of ZXM100 and ZXM120 magnesium alloys. Inter Metalcast 13, 905–914 (2019). https://doi.org/10.1007/s40962-019-00308-1

    CAS  Article  Google Scholar 

  4. 4.

    N. Li, Y.F. Zheng, Novel magnesium alloys developed for biomedical application: a review. J. Mater. Sci. Technol. 29, 489–502 (2013). https://doi.org/10.1016/j.jmst.2013.02.005

    CAS  Article  Google Scholar 

  5. 5.

    R. Hedayati, S.M. Ahmadi, K. Lietaert et al., Fatigue and quasi-static mechanical behavior of bio-degradable porous biomaterials based on magnesium alloys. J. Biomed. Mater. Res. A 106, 1798–1811 (2018). https://doi.org/10.1002/jbm.a.36380

    CAS  Article  Google Scholar 

  6. 6.

    M.E. Iskandar, A. Aslani, H. Liu, The effects of nanostructured hydroxyapatite coating on the biodegradation and cytocompatibility of magnesium implants. J. Biomed. Mater. Res. A 101A, 2340–2354 (2013). https://doi.org/10.1002/jbm.a.34530

    CAS  Article  Google Scholar 

  7. 7.

    R. Erbel, C.D. Mario, J. Bartunek et al., Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective. Non-Randomised Multicentre Trial. Lancet 369, 1869–1875 (2007). https://doi.org/10.1016/S0140-6736(07)60853-8

    CAS  Article  Google Scholar 

  8. 8.

    R.C. Zeng, L.Y. Cui, W. Ke, Biomedical Magnesium Alloys: Composition, Microstructure and Corrosion. Acta. Metall. Sin 54, 1215–1235 (2018). https://doi.org/10.11900/0412.1961.2018.00032

    CAS  Article  Google Scholar 

  9. 9.

    L. Wei, J. Li, Y. Zhang et al., Effects of Zn content on microstructure, mechanical and degradation behaviors of Mg–xZn–0.2Ca–0.1Mn alloys. Mater. Chem. Phys 241, 122441 (2019). https://doi.org/10.1016/j.matchemphys.2019.122441

    CAS  Article  Google Scholar 

  10. 10.

    A.F. Lotfabadi, M.H. Idris, A. Ourdjini et al., Thermal characteristics and corrosion behaviour of Mg–xZn alloys for biomedical applications. B. Mater. Sci 36, 1103–1113 (2013). https://doi.org/10.1007/s12034-013-0566-9

    CAS  Article  Google Scholar 

  11. 11.

    Y. Yan, H.W. Cao, Y.J. Kang et al., Effects of Zn concentration and heat treatment on the microstructure, mechanical properties and corrosion behavior of As-extruded Mg–Zn alloys produced by powder metallurgy. J. Alloys Compd 693, 1277–1289 (2017). https://doi.org/10.1016/j.jallcom.2016.10.017

    CAS  Article  Google Scholar 

  12. 12.

    C. Zhao, F. Pan, L. Zhang et al., Microstructure, mechanical properties, bio-corrosion properties and cytotoxicity of As-extruded Mg-Sr alloys. Mat. Sci. Eng. C-Mater 70, 1081–1088 (2017). https://doi.org/10.1016/j.msec.2016.04.012

    CAS  Article  Google Scholar 

  13. 13.

    Zengin, H. Role of Sr in Microstructure, Hardness and Biodegradable Behavior of Cast Mg-2Zn-2Ca-0.5Mn (ZXM220) Alloy for Potential Implant Application. Inter Metalcast 14, 442-453 (2020). https://doi.org/10.1007/s40962-019-00366-5

  14. 14.

    G.Y. Dong, G.Y. Sha, T. Liu et al., Effects of Sr addition on microstructures and mechanical properties of Mg–1Zn–1Ca–xSr alloys. Mater. Res. Express 7, 016530 (2020). https://doi.org/10.1088/2053-1591/ab6259

    CAS  Article  Google Scholar 

  15. 15.

    Yan, L., Zhou, J. X., Sun, Z. Z. et al. Microstructure and Bio-corrosion Behaviour of Mg-5Zn-0.5Ca-xSr Alloys as Potential Biodegradable Implant Materials. Mater. Res. Express 5, 045401 (2018). https://doi.org/10.1088/2053-1591/aab878

  16. 16.

    Y. Li, C. Wen, D. Mushahary et al., Mg-Zr-Sr Alloys as Biodegradable Implant Materials. Acta Biomater 8, 3177–3188 (2012). https://doi.org/10.1016/j.actbio.2012.04.028

    CAS  Article  Google Scholar 

  17. 17.

    Y.C. Li, C.S. Wong, C. Wen et al., Biodegradable Mg–Zr–Ca alloys for bone implant materials. Mater. Technol 27, 49–51 (2012). https://doi.org/10.1179/175355511X13240279339482

    CAS  Article  Google Scholar 

  18. 18.

    Ning, Z. L., Liu, H. H., Cao, F. Y. et al. The Effect of Grain Size on The Tensile and Creep Properties of Mg-2.6Nd-0.35Zn-xZr Alloys at 250 °C. Mat. Sci. Eng. A-Struct 560, 163-169 (2013). https://doi.org/10.1016/j.msea.2012.09.052

  19. 19.

    Y. Sun, W.X. Zhang, C.X. Xu et al., Microstructures and Biocorrosion Properties of Biodegradable Mg-Zn-Y-Ca-xZr Alloys. Int. J. Mater. Res 109, 621–628 (2018). https://doi.org/10.3139/146.111651

    CAS  Article  Google Scholar 

  20. 20.

    L.X. Chen, Y.Y. Sheng, X.J. Wang et al., Effect of the Microstructure and Distribution of the Second Phase on the Stress Corrosion Cracking of Biomedical Mg-Zn-Zr-xSr Alloys. Materials 11, 551 (2018). https://doi.org/10.3390/ma11040551

    CAS  Article  Google Scholar 

  21. 21.

    Z. Li, M.F. Chen, W. Li et al., The Synergistic Effect of trace Sr and Zr on the Microstructure and Properties of a Biodegradable Mg-Zn-Zr-Sr Alloy. J. Alloy. Compd 702, 290–302 (2017). https://doi.org/10.1016/j.jallcom.2017.01.178

    CAS  Article  Google Scholar 

  22. 22.

    R.C. Zeng, L. Sun, Y.F. Zheng et al., Corrosion and Characterisation of Dual Phase Mg-Li-Ca Alloy in Hank’s solution: The Influence of Microstructural Features. Corros. Sci 79, 69–82 (2014). https://doi.org/10.1016/j.corsci.2013.10.028

    CAS  Article  Google Scholar 

  23. 23.

    Li, T., He, Y., Zhang, H. et al. Microstructure, Mechanical Property and in Vitro Biocorrosion Behavior of Single-Phase Biodegradable Mg-1.5Zn-0.6Zr Alloy. J. Magnes. Alloy 2, 181-189 (2014). https://doi.org/10.1016/j.jma.2014.05.006

  24. 24.

    L. Yang, Y. Huang, F. Feyerabend et al., Microstructure, Mechanical and Corrosion Properties of Mg-Dy-Gd-Zr Alloys for Medical Applications. Acta Biomater 9, 8499–8508 (2013). https://doi.org/10.1016/j.actbio.2013.03.017

    CAS  Article  Google Scholar 

  25. 25.

    Cao, F., Z Shi, Z., Song, G. L. et al. Corrosion Behaviour in Salt Spray and in 3.5% NaCl Solution Saturated with Mg(OH)2 of as-cast and Solution Heat-treated Binary Mg-X alloys: X = Mn, Sn, Ca, Zn, Al, Zr, Si, Sr. Corros. Sci 76, 60-97 (2013). https://doi.org/10.1016/j.corsci.2013.06.030

  26. 26.

    Y.C. Lee, A.K. Dahle, D.H. Stjohn, The Role of Solute in Grain Refinement of Magnesium. Metall. Mater. Trans. A 31, 2895–2906 (2000). https://doi.org/10.1007/BF02830349

    Article  Google Scholar 

  27. 27.

    H.Y. Lai, J.Y. Li, J.X. Li et al., Effects of Sr on the Microstructure, Mechanical Properties and Corrosion Behavior of Mg-2Zn-xSr Alloys. J. Mater Sci-Mater M 29, 87 (2018). https://doi.org/10.1007/s10856-018-6093-x

    CAS  Article  Google Scholar 

  28. 28.

    C.C. Xiang, N. Gupta, P. Coelho et al., Effect of Microstructure on Tensile and Compressive Behavior of WE43 Alloy in as Cast and Heat Treated Conditions. Mat. Sci. Eng. A-Struct 710, 74–85 (2018). https://doi.org/10.1016/j.msea.2017.10.084

    CAS  Article  Google Scholar 

  29. 29.

    J. Medina, P. Pérez, G. Garcés et al., Effects of Calcium, Manganese and Cerium-Rich Mischmetal Additions on the Mechanical Properties of Extruded Mg-Zn-Y alloy Reinforced by Quasicrystalline I-phase. Mater. Charact 129, 195–206 (2017). https://doi.org/10.1016/j.matchar.2017.04.033

    CAS  Article  Google Scholar 

  30. 30.

    Z.Z. Jin, M. Zha, Z.Y. Yu et al., Exploring the Hall-Petch Relation and Strengthening Mechanism of Bimodal-Grained Mg-Al-Zn Alloys. J. Alloy. Compd 833, 1–7 (2020). https://doi.org/10.1016/j.jallcom.2020.155004

    CAS  Article  Google Scholar 

  31. 31.

    S. Cai, T. Lei, N. Li et al., Effects of Zn on Microstructure, Mechanical Propertiesand Corrosion Behavior of Mg-Zn Alloys. Mat. Sci. Eng. C-Mater 32, 2570–2577 (2012). https://doi.org/10.1016/j.msec.2012.07.042

    CAS  Article  Google Scholar 

  32. 32.

    S. Baek, J.S. Kang, H. Shin et al., Role of Alloyed Y in Improving the Corrosion Resistance of Extruded Mg-Al-Ca-based Alloy. Corros. Sci 118, 227–232 (2017). https://doi.org/10.1016/j.corsci.2017.01.022

    CAS  Article  Google Scholar 

  33. 33.

    B. Salami, A. Afshar, A. Mazaheri, The Effect of Sodium Silicate Concentration on Microstructure and Corrosion Properties of MAO-coated Magnesium Alloy AZ31 in Simulated Body Fluid. J. Magnes. Alloy 2, 72–77 (2014). https://doi.org/10.1016/j.jma.2014.02.002

    CAS  Article  Google Scholar 

  34. 34.

    K.D. Ralston, N. Birbilis, Effect of Grain Size on Corrosion: A Review. Corrosion 66, 075005 (2010). https://doi.org/10.5006/1.3462912

    Article  Google Scholar 

  35. 35.

    Cai, C. H., Song, R. B., Wang, L., X. et al. Surface Corrosion Behavior and Reaction Product Film Deposition Mechanism of Mg-Zn-Zr-Nd Alloys During Degradation Process in Hank's Solution. Surf. Coat. Tech 342, 57-68 (2018). https://doi.org/10.1016/j.surfcoat.2018.02.085

Download references

Acknowledgements

The authors acknowledge the Dongguan Social Science and Technology Development Key Project (No. 2020507140148) for supporting this research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Runxia Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bian, J., Yu, B., Jiang, L. et al. Research on the Effect of Sr and Zr on Microstructure and Properties of Mg–4Zn Alloy. Inter Metalcast (2021). https://doi.org/10.1007/s40962-021-00576-w

Download citation

Keywords

  • magnesium alloy
  • microstructure
  • tensile properties
  • corrosion behavior