Effects of Alloying with Sn and Mg on the Microstructure and Electrochemical Behavior of Cast Aluminum Sacrificial Anodes


The influence of alloying with Sn and Mg instead of In during casting of Al–5 wt% Zn sacrificial anodes on their microstructure and electrochemical properties was investigated. The addition levels were 0.1–1.0 wt% Sn and 0.5–2.0 wt% Mg. The different microstructures were studied, and the effect of particles distribution on the performance of the alloys as sacrificial anodes was discussed. It was observed that increasing amount of Sn distributes its particles locally on the grain boundaries which remarkably affected the electrochemical behavior of the alloys. Adding Sn up to 1.0% gradually shifted the potential of the Al–5 wt% Zn alloy toward more negative values (~ − 0.92 to − 1.1 V) and enhanced the breakdown of the oxide layer. Accordingly, the alloys containing Sn in amounts that range between 0.3 and 1.0 wt% exhibited electrochemical properties close to that of the In-containing alloy. Magnesium addition of 0.5 wt% showed remarkable grain refinement where the grain size range of the base alloy was reduced from (150–200 μm) down to (70–100 μm) due to Mg distribution on the grain boundary area. With increasing Mg wt%, grain coarsening occurred due to the segregation of Mg in the matrix which encouraged the breakdown of the passive film and hence increased the corrosion rate. However, the potential levels of the investigated Mg alloys showed more positive values compared to that of the In-containing alloy, which may hinder using this group of alloys for sacrificial anodes applications.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26


  1. 1.

    E.H. Hollingsworth, N.Y. Hunsicker, Corrosion of aluminum and aluminum alloys, Metals Handbook, Vol 13, Corrosion, 9th edn. (ASM International, Metals Park, 1987), p. 583

    Google Scholar 

  2. 2.

    W. Von Baeckmann, W.S. Schwenk, Handbook of Cathodic Corrosion Protection, 3rd edn. (Gulf Professional Publishing, Houston, 1997)

    Google Scholar 

  3. 3.

    A. Bruzzone, G. Burbacci, J. Cerisola, J. Alloys Compd. 247, 210 (1997)

    CAS  Article  Google Scholar 

  4. 4.

    A.G. Kulkarni, I. Gurrappa, Br. Corros. J. 28, 67 (1993)

    CAS  Article  Google Scholar 

  5. 5.

    Y. Tamada, Y. Tamaura, Corros. Sci. 34, 1099 (1993)

    Article  Google Scholar 

  6. 6.

    R. Mohammad Saeri, A. Keyvani, Optimization of manganese and magnesium contents in As-cast aluminum–zinc–indium alloy as sacrificial anode. J. Mater. Sci. Technol. 27(9), 785–792 (2011)

    Article  Google Scholar 

  7. 7.

    H. Sina, M. Emamy, M. Saremi, A. Keyvani, M. Mahta, J. Campbell, The influence of Ti and Zr on electrochemical properties of aluminum sacrificial anodes. Mater. Sci. Eng. A 431, 263–276 (2006)

    Article  Google Scholar 

  8. 8.

    R. Lazarova, N. Bojanova, R. Dimitrova, V. Manolov, Influence of nanoparticles introducing in the melt of aluminum alloys on castings microstructure and properties. Int. Metalcast. 10, 46–476 (2016)

    Article  Google Scholar 

  9. 9.

    R. Ghiaassian, S. Shankr, Effect of alloy composition on microstructure and tensile properties of net-shaped castings of Al–Zn–Mg–Cu alloys. Int. Metalcast. 13, 300–310 (2019)

    Article  Google Scholar 

  10. 10.

    N. Wang, R. Wang, C. Peng, B. Peng, Y. Feng, C. Hu, Discharge behavior of Mg–AJ–Pb and Mg–Al–Pb–In alloys as anodes for Mg-air battery. Electrochim. Acta 149, 193–205 (2014)

    CAS  Article  Google Scholar 

  11. 11.

    H.-X. Jin, R.-C. Wang, C.-Q. Peng, K. Shi, Y. Feng, Effect of ln addition on corrosion or AP65 Mg alloy. J. Cent. South. Univ. 19, 2086–2093 (2012)

    CAS  Article  Google Scholar 

  12. 12.

    J. Li, K. Wan, Q. Jiang, H. Sun, Y. Li, S. Hou, L. Zhu, M. Liu, Corrosion and discharge behaviors or Mg–Al–2n and Mg–Al–2n–ln alloys as anode mater. Met. Basel. 6, 65 (2016)

    Google Scholar 

  13. 13.

    J. Li, B. Zhang, Q. Wei, N. Wang, B. Hou, Electrochemical behavior of Mg–Al–Zn–In alloy as anode materials in 35 wt.% NaCl solution. Electrochim. Acta 238, 156–167 (2017)

    CAS  Article  Google Scholar 

  14. 14.

    T.B. Massalski, H. Okamoto, Binary Alloy Phase Diagrams, 2nd edn. (American Society for Metals, Metals Park, 1996)

    Google Scholar 

  15. 15.

    A.G. Munnoz, S.B. Saidman, J.B. Bessone, Corrosion of an Al–Zn–In alloy in chloride media. Corros. Sci. 44, 2171–2182 (2002)

    Article  Google Scholar 

  16. 16.

    L.E. Umoru, O.O. Ige, Effects of tin on aluminum–zinc–magnesium alloy as sacrificial anode in seawater. J. Miner. Mater. Charact. Eng. 7(2), 105–113 (2017)

    Google Scholar 

  17. 17.

    W.M. Carroll, C.B. Breslin, Activation of aluminium in halide solutions containing ‘activator ions’. Corros. Sci. 33, 1161 (1992)

    CAS  Article  Google Scholar 

  18. 18.

    S. Khireche, D. Boughrara, A. Kadri, L. Hamadou, N. Benbrahim, Corrosion mechanism of Al, Al–Zn and Al–Zn–Sn alloys in 3 wt% NaCl solution. Corros. Sci. 87, 504–516 (2014)

    CAS  Article  Google Scholar 

  19. 19.

    J.A. Tony, Richardson. Shreir’s Corros. 3, 2042–2052 (2010)

    Google Scholar 

  20. 20.

    S. El-Hadad, M. Mhaede, K.M. Ibrahiem, Microstructural effects on corrosion behavior of investment cast Ti–6.5Al–3.4Mo–1.7Zr alloy. Int. J. Cast Met. Res. 29(4), 243–250 (2016)

    CAS  Article  Google Scholar 

  21. 21.

    K. Fagbayi, D. Scantlebury, Adverse effect of temperature on the operating-potential behavior of Al–Zn–In anodes. J. Corros. Sci. Eng. 4, 1 (2003)

    Google Scholar 

  22. 22.

    F. Andreatta, M.M. Lohrengel, H. Terryn, J.H.W. de Wit, J.H.W. de Wit, Electrochemical characterisation of aluminium AA7075–T6 and solution heat treated AA7075 using a micro-capillary cell. Electrochim. Acta 48, 3239–3247 (2003)

    CAS  Article  Google Scholar 

  23. 23.

    H. Junguang He, J. Wen, X. Li, Effects of precipitates on the electrochemical performance of Al sacrificial anode. Corros. Sci. 53, 1948–1953 (2011)

    Article  Google Scholar 

  24. 24.

    M. Nestoridi, D. Pletcher, R.J.K. Wood, S. Wang, R.L. Jones, K.R. Stokes, I. Wilcock, The study of aluminium anodes for high power density Al/air batteries with brine electrolytes. J. Power Sources 178, 445 (2008)

    CAS  Article  Google Scholar 

  25. 25.

    I.L. Muller, J.R. Galvele, Pitting of high purity binary aluminium alloys-II. Al–Mg and Al–Zn alloys. Corros. Sci. 17, 995–1007 (1977)

    CAS  Article  Google Scholar 

Download references


The authors would like to acknowledge the Corrosion Control and Surface Protection Department at Central Metallurgical Research and Development Institute for their technical support. The corresponding author would like to acknowledge the fund from the Science Technology and Development Fund—Egypt, Grant No. 26565.

Author information



Corresponding author

Correspondence to Shimaa El-Hadad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

El-Hadad, S., Moussa, M.E. & Waly, M. Effects of Alloying with Sn and Mg on the Microstructure and Electrochemical Behavior of Cast Aluminum Sacrificial Anodes. Inter Metalcast (2020). https://doi.org/10.1007/s40962-020-00483-6

Download citation


  • aluminum sacrificial anodes
  • casting
  • microstructure
  • electrochemical properties