Role of Sr in Microstructure, Hardness and Biodegradable Behavior of Cast Mg–2Zn–2Ca–0.5Mn (ZXM220) Alloy for Potential Implant Application

Abstract

Microstructure, hardness and biocorrosion properties of ZXM220–xSr alloys (x = 0, 0.2, 0.4, 0.8 and 1 wt%) were investigated, and the results were compared with each other. Microstructural characterizations were carried out by XRD, optical and scanning electron microscopes. Biocorrosion properties were determined by immersion and electrochemical corrosion tests, performed in a simulated body fluid solution at 37 °C. Compared to the Sr-free alloy, Sr-bearing alloys exhibited a smaller grain size and a higher volume fraction of second-phase particles. The hardness of the alloy was also gradually improved by increasing Sr additions. Biocorrosion properties of the alloy significantly improved by 0.2 wt% Sr addition, and these properties deteriorated with higher additions of Sr due to the strong microgalvanic effect of coarse second-phase particles. Therefore, the ZXM220–0.2Sr alloy can be regarded as a promising candidate for a new biodegradable implant material due to the optimum results of mechanical and biocorrosion properties.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

References

  1. 1.

    M.-S. Song, R.-C. Zeng, Y.-F. Ding, R.W. Li, M. Easton, I. Cole, N. Birbilis, X.-B. Chen, J. Mater. Sci. Technol. 35, 535 (2019)

    Article  Google Scholar 

  2. 2.

    A. Elsayed, E. Vandersluis, S. Lun Sin, C. Ravindran, Int. J. Met. 11, 749 (2017)

    CAS  Google Scholar 

  3. 3.

    M.P. Staiger, A.M. Pietak, J. Huadmai, G. Dias, Biomaterials 27, 1728 (2006)

    CAS  Article  Google Scholar 

  4. 4.

    Z. Li, X. Gu, S. Lou, Y. Zheng, Biomaterials 29, 1329 (2008)

    CAS  Article  Google Scholar 

  5. 5.

    C.H. Caceres, G.E. Mann, J.R. Griffiths, Metall. Mater. Trans. A 42, 1950 (2011)

    CAS  Article  Google Scholar 

  6. 6.

    S. Cai, T. Lei, N. Li, F. Feng, Mater. Sci. Eng., C 32, 2570 (2012)

    CAS  Article  Google Scholar 

  7. 7.

    H.R. Bakhsheshi-Rad, M.H. Idris, M.R.A. Kadir, S. Farahany, Mater. Des. 33, 88 (2012)

    Article  Google Scholar 

  8. 8.

    A. Incesu and A. Gungor, Int. J. Met. (2019)

  9. 9.

    J.C. Gao, S. Wu, Y. Wang, L.Y. Qiao, Mater. Sci. Forum 610, 942–945 (2009)

    Article  Google Scholar 

  10. 10.

    E. Zhang, D. Yin, L. Xu, L. Yang, K. Yang, Mater. Sci. Eng., C 29, 987 (2009)

    CAS  Article  Google Scholar 

  11. 11.

    H. Lai, J. Li, J. Li, Y. Zhang, Y. Xu, J. Mater. Sci. Mater. Med. 29, 87 (2018)

    Article  Google Scholar 

  12. 12.

    D. Ke, S. Tarafder, S. Vahabzadeh, S. Bose, Mater. Sci. Eng., C 96, 10 (2019)

    CAS  Article  Google Scholar 

  13. 13.

    Y. Li, C. Wen, D. Mushahary, R. Sravanthi, N. Harishankar, G. Pande, P. Hodgson, Acta Biomater. 8, 3177 (2012)

    CAS  Article  Google Scholar 

  14. 14.

    S. Bose, S. Tarafder, S.S. Banerjee, N.M. Davies, A. Bandyopadhyay, Bone 48, 1282 (2011)

    CAS  Article  Google Scholar 

  15. 15.

    M. Cheng, J. Chen, H. Yan, B. Su, Z. Yu, W. Xia, X. Gong, J. Alloys Compd. 691, 95 (2017)

    CAS  Article  Google Scholar 

  16. 16.

    D. Jiang, Y. Dai, Y. Zhang, C. Liu, K. Yu, Mater. Res. Express 6, 056556 (2019)

    CAS  Article  Google Scholar 

  17. 17.

    L. Yan, J. Zhou, Z. Sun, M. Yang, L. Ma, Mater. Res. Express 5, 045401 (2018)

    Article  Google Scholar 

  18. 18.

    J. Wang, Y. Ma, S. Guo, W. Jiang, Q. Liu, Mater. Des. 153, 308 (2018)

    CAS  Article  Google Scholar 

  19. 19.

    H. Pan, K. Pang, F. Cui, F. Ge, C. Man, X. Wang, Z. Cui, Corros. Sci. 157, 420 (2019)

    CAS  Article  Google Scholar 

  20. 20.

    H.R. Bakhsheshi-Rad, M.H. Idris, M.R. Abdul-Kadir, A. Ourdjini, M. Medraj, M. Daroonparvar, E. Hamzah, Mater. Des. 53, 283 (2014)

    CAS  Article  Google Scholar 

  21. 21.

    H. Zengin, Y. Turen, L. Elen, J. Mater. Eng. Perform 28, 4647–4657 (2019)

    CAS  Article  Google Scholar 

  22. 22.

    ASTM E112-13, Standard Test Methods for Determining Average Grain Size (ASTM International, West Conshohocken, 2013)

    Google Scholar 

  23. 23.

    T. Kokubo, H. Takadama, Biomaterials 27, 2907 (2006)

    CAS  Article  Google Scholar 

  24. 24.

    A. Atrens, G.-L. Song, M. Liu, Z. Shi, F. Cao, M.S. Dargusch, Adv. Eng. Mater. 17, 400 (2015)

    CAS  Article  Google Scholar 

  25. 25.

    A. A. Nayeb-Hashemi, J. B. Clark, and ASM International, Phase Diagrams of Binary Magnesium Alloys (ASM International, Metals Park, 1988)

    Google Scholar 

  26. 26.

    H. Zengin, Y. Turen, Mater. Chem. Phys. 214, 421 (2018)

    CAS  Article  Google Scholar 

  27. 27.

    A.S.M. Handbook, Volume 3: Alloy Phase Diagrams, 10th edn. (ASM International, Materials Park, 1992)

    Google Scholar 

  28. 28.

    G.L. Song, A. Atrens, Adv. Eng. Mater. 1, 11 (1999)

    CAS  Article  Google Scholar 

  29. 29.

    G.R. Argade, S.K. Panigrahi, R.S. Mishra, Corros. Sci. 58, 145 (2012)

    CAS  Article  Google Scholar 

  30. 30.

    N. Birbilis, K.D. Ralston, S. Virtanen, H.L. Fraser, C.H.J. Davies, Corros. Eng., Sci. Technol. 45, 224 (2010)

    CAS  Article  Google Scholar 

  31. 31.

    M. Mandal, A.P. Moon, G. Deo, C.L. Mendis, K. Mondal, Corros. Sci. 78, 172 (2014)

    CAS  Article  Google Scholar 

  32. 32.

    J.W. Chang, L.M. Peng, X.W. Guo, A. Atrens, P.H. Fu, W.J. Ding, X.S. Wang, J. Appl. Electrochem. 38, 207 (2008)

    CAS  Article  Google Scholar 

  33. 33.

    M.E. Turan, Y. Sun, F. Aydin, H. Zengin, Y. Turen, H. Ahlatci, Mater. Chem. Phys. 218, 182 (2018)

    CAS  Article  Google Scholar 

  34. 34.

    G. Song, A. Atrens, D.S. John, X. Wu, J. Nairn, Corros. Sci. 39, 1981 (1997)

    CAS  Article  Google Scholar 

  35. 35.

    M. Liu, P. Schmutz, P.J. Uggowitzer, G. Song, A. Atrens, Corros. Sci. 52, 3687 (2010)

    CAS  Article  Google Scholar 

  36. 36.

    M. Jamesh, S. Kumar, T.S.N. Sankara Narayanan, Corros. Sci. 53, 645 (2011)

    CAS  Article  Google Scholar 

  37. 37.

    H. Li, S. Pang, Y. Liu, L. Sun, P.K. Liaw, T. Zhang, Mater. Des. 67, 9 (2015)

    CAS  Article  Google Scholar 

  38. 38.

    X. Gu, Y. Zheng, S. Zhong, T. Xi, J. Wang, W. Wang, Biomaterials 31, 1093 (2010)

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Huseyin Zengin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zengin, H. Role of Sr in Microstructure, Hardness and Biodegradable Behavior of Cast Mg–2Zn–2Ca–0.5Mn (ZXM220) Alloy for Potential Implant Application. Inter Metalcast 14, 442–453 (2020). https://doi.org/10.1007/s40962-019-00366-5

Download citation

Keywords

  • ZXM220
  • magnesium alloys
  • microstructure
  • corrosion
  • biomaterial