Skip to main content
Log in

Grain Refinement of Al–2%Cu Alloy Using Vibrating Mold

  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

Vibration effects on grain refinement in aluminum alloy were investigated by mechanically vibrating metal mold during solidification. Results show that both the frequency and the half amplitude affected the grain refinement, decreasing the average grain size. We hypothesized that the average grain size can be estimated from the excitation force consolidating them. To clarify grain refinement mechanisms, experiments were conducted with different vibration starting times and different vibration periods. Moreover, a water model experiment was conducted using ammonium chloride solution. Both the equiaxed grain size and the columnar grain length were reduced by mold vibration before pouring, irrespective of the vibration period. However, when the mold was vibrated at 15 s after pouring, the columnar grain length increased. Moreover, the equiaxed grain size increased greatly. Water model experiments showed that a vibrated mold made of polycarbonate and aluminum alloy produced many crystals near the mold wall and filled the mold by vibration and induced convection. These results clarified that starting vibration before solidification is important for grain refinement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. N.J. Petch, Philos. Mag. 3, 1089 (1958)

    Article  Google Scholar 

  2. A. Waguri, Youketsu Kikaikousakuhou (Youkendo) 36, 58 (1975)

    Google Scholar 

  3. R.J. Kissling, J.F. Wallace, Foundry 91,5,142 (1963)

  4. S. Terai, J. JILM 24, 42 (1974)

    Article  Google Scholar 

  5. K. Oda, S. Komarov, Y. Ishiwata, J. JILM 61, 4,149 (2011)

    Article  Google Scholar 

  6. Y. Osawa, G. Arakane, S. Takamori, S. Sato, O. Ohashi, J. JFS 71, 98 (1999)

    Google Scholar 

  7. Y. Osawa, S. Takamori, G. Arakane, O. Umezawa, S. Sato, O. Ohashi, J. JFS 72, 187 (2000)

    Google Scholar 

  8. K. Taga, Y. Fukui, Y. Tsunekawa, M. Okumiya, J. JFS 81, 469 (2009)

    Google Scholar 

  9. J. Barbosa, H. Puga, IJMC (2018). https://doi.org/10.1007/s40962-018-0248-x

    Google Scholar 

  10. G.I. Eskin, Ultrasonic Treatment of Light Alloy Melts (CRC Press, Boca Raton, 1998)

    Book  Google Scholar 

  11. L. Zhang, D.G. Eskin, L. Kategerman, J. Mater. Sci. 46, 5252 (2011)

    Article  Google Scholar 

  12. G. Wang, M.S. Dargusch, M. Qian, D.G. Eskin, D.H. Stjohn, J. Cryst. Growth 408, 119 (2014)

    Article  Google Scholar 

  13. K. Miwa, J. JILM 52, 611 (2002)

    Article  Google Scholar 

  14. T. Momono, K. Ikawa, J. JILM 29, 240 (1979)

    Article  Google Scholar 

  15. S. Nishida, H. Era, F. Otsubo, J. JFS 84, 526 (2012)

    Google Scholar 

  16. K. Hoshino, K. Kamiyama, T. Sakai, T. Kurosawa, T. Otani, IMONO 66, 217 (1994)

    Google Scholar 

  17. N. Omura, Y. Murakami, M. Li, T. Tamura, K. Miwa, H. Hurukawa, J. JFS 81, 536 (2009)

    Google Scholar 

  18. N. Omura, Y. Murakami, M. Li, T. Tamura, K. Miwa, H. Hurukawa, M. Harada, M. Yokoi, J. JFS 81, 295 (2009)

    Google Scholar 

  19. K. Hoshino, T. Sakai, T. Kurosawa, S. Ito, T. Otani, IMONO 61, 581 (1989)

    Google Scholar 

  20. K. Hoshino, Y. Nagadome, T. Sakai, T. Kurosawa, T. Otani, J. JFS 68, 124 (1996)

    Google Scholar 

  21. T. Ohmi, M. Kudo, M. Iguchi, J. JFS 77, 542 (2005)

    Google Scholar 

  22. M.C. Mehta, S.K. Chaudhury, D. Mandal, IJMC (2018). https://doi.org/10.1007/s40962-018-0271-y

    Google Scholar 

  23. E.A. Hiedemann, J. Acoust. Soc. Am. 5, 831 (1954)

    Article  Google Scholar 

  24. R.S. Richards, W. Rostoker, Trans. ASM 48, 886 (1956)

    Google Scholar 

  25. A.H. Freedman, J.F. Wallace, Trans. AFS 65, 578 (1956)

    Google Scholar 

  26. F.C. Langenberg, G. Pestel, C.R. Honeycutt, Trans. TMS-AIME 221, 993 (1961)

    Google Scholar 

  27. W.C. Johnston, G.R. Kotler, S. O’Hara, H.V. Ashcom, W.A. Tiller, Trans. TMS-AIME 233, 1856 (1965)

    Google Scholar 

  28. D. Eskin, N. Alba-Baena, T. Pabel, M. da Silva, Mater. Sci. Technol. 31, 79 (2014)

    Article  Google Scholar 

  29. T. Otani, T. Sakai, K. Hoshino, T. Kurosawa, IMONO 59, 590 (1987)

    Google Scholar 

  30. Y. Osawa, A. Sato, T. Namai, G. Arakane, IMONO 65, 288 (1993)

    Google Scholar 

  31. A. Nishimura, Y. Kawano, J. JILM 25, 193 (1975)

    Article  Google Scholar 

  32. Y. Osawa, S. Takamori, T. Kimura, K. Minagawa, J. JFS 79, 738 (2007)

    Google Scholar 

  33. Y. Osawa, A. Sato, J. JFS 72, 733 (2000)

    Google Scholar 

  34. H. Yasuda, K. Nogita, Y. Yamamoto, T. Nagira, M. Yoshiya, K. Uesugi, K. Umetani, A. Takeuchi, Y. Suzuki, J. JILM 61, 736 (2011)

    Article  Google Scholar 

  35. D. Ruvalcaba, R.H. Mathiesen, D.G. Eskin, L. Arnberg, L. Katgerman, Acta Mater. 55, 4287 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuo Yoshitake.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshitake, Y., Yamamoto, K., Sasaguri, N. et al. Grain Refinement of Al–2%Cu Alloy Using Vibrating Mold. Inter Metalcast 13, 553–560 (2019). https://doi.org/10.1007/s40962-018-0289-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-018-0289-1

Keywords

Navigation