Skip to main content
Log in

Two Inoculation Methods for Refining As-Cast Grain Structure in Austenitic 316L Steel

  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

Two inoculation methods were utilized to introduce titanium nitride (TiN) particles into an AISI 316L steel melt to refine the as-cast grain structure during solidification. The design of the experimental melt treatments and grain refining additions was performed using thermodynamic simulations. The first inoculation method is based on in situ formation of heterogeneous nuclei by TiN co-precipitation on preexisting Mg–Al spinel inclusions. This method included a two-stage melt treatment using spinel forming additions followed by an addition of titanium in the ladle just prior to pouring. The second inoculation method used a newly developed master alloy that contains TiN precipitates which was added in the ladle during furnace tapping. In this method, protective conditions to prevent full dissolution of the TiN nuclei before the onset of solidification were determined by thermodynamic simulations. Grain refinement of the cast macrostructure was observed with both methods. The in situ method provided finer equiaxed grains than the master alloy method, while a thicker zone with columnar grains next to the chill was observed. A scanning electron microscope (SEM) with automated feature analysis was used to quantify the resulting inclusions. The master alloy method eliminated the need for spinel, gave better control of the amount and size of heterogeneous nuclei, and reduced clustering tendency in comparison with the in situ method. However, the in situ formed nuclei method is more effective to refine grain size. The effects of contact angle and nuclei surface geometry on the activity of heterogeneous nucleation were discussed. It is proposed that clustering TiN particles provides numerous sharp, concave corners which favors the heterogeneous nucleation of austenite grains. This is illustrated by SEM images of extracted TiN particles and electron backscatter diffraction analysis of grain orientation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Similar content being viewed by others

References

  1. H. Hossam, JMMCE 2(5), 428–469 (2014)

    Article  Google Scholar 

  2. M. Maalekian, The Effects of Alloying Elements on Steels (I), Report (Graz University of Technology, Austria, 2007)

    Google Scholar 

  3. J.F. Wallace, JOM 15(5), 372–376 (1963)

    Article  Google Scholar 

  4. Z. Liu, Metall. Mater. Trans. A 48(10), 4755–4776 (2017)

    Article  Google Scholar 

  5. Y. Itoh, T. Okajima, K. Tashiro, ISIJ Int. 21(6), 397–404 (1981)

    Article  Google Scholar 

  6. A. Abugh, I.K. Kuncy, JESR 19(1), 7–12 (2013)

    Google Scholar 

  7. X.R. Chen, H. Zhong, C.J. Song, Q.J. Jie, Adv. Mater. Res. 683, 626–630 (2013)

    Article  Google Scholar 

  8. H. Takeuchi et al., ISIJ Int. 21(2), 109–116 (1981)

    Article  Google Scholar 

  9. Y. Itoh, T. Okajima, H. Maede, K. Tashiro, ISIJ Int. 22(3), 223–229 (1982)

    Article  Google Scholar 

  10. X.Q. Wu et al., JMEP 8(5), 525–530 (1999)

    Article  Google Scholar 

  11. S. Zhou, H. Li, J. Rao, China Foundry 4(3), 198–201 (2007)

    Google Scholar 

  12. S. Zhou et al., J. Cent. South Univ. Technol. 16(3), 360–364 (2009)

    Article  Google Scholar 

  13. Y. Xu, E. Wang, Z. Li, A. Deng, J. Iron. Steel Res. Int. 24(5), 483–489 (2017)

    Article  Google Scholar 

  14. B. Chalmers, Principles of Solid (Wiley, Hoboken, 1964), pp. 62–90

    Google Scholar 

  15. M. Flemings, Solidification Processing (McGraw-Hill, New York City, 1974), pp. 290–327

    Google Scholar 

  16. W. Kurz, D. Fisher, Fundamentals of Solidification (Trans. Tech. Publications, Zürich, 1986), pp. 21–45

    Google Scholar 

  17. B. Bramfitt, Metall. Trans. 1(7), 1987–1995 (1970)

    Article  Google Scholar 

  18. S.N. Lekakh, N.I. Medvedeva, Comput. Mater. Sci. 106, 149–154 (2015)

    Article  Google Scholar 

  19. N. Tyas, A Dissertation at the University of Cambridge, 2000

  20. C. Van der Eijk, J. Walmsley, in ISS Electric Furnace Conference (2001), pp. 51–60

  21. D. Siafakas et al., Metals 7(6), 186 (2017)

    Article  Google Scholar 

  22. S.N. Lekakh et al., Metall. Mater. Trans. B 48(1), 406–419 (2017)

    Article  Google Scholar 

  23. T. Inada, A Master’s Thesis at Massachusetts Institute of Technology, 1999

  24. D. Siafakas, Thesis at Jönköping University, 2017

  25. M. Andersson et al., Technical Report, European Commission, 2011

  26. R. Tuttle, Technical Report, Office of Naval Research, 2009

  27. F. Pan et al., Materials 9(6), 1–19 (2016)

    Article  Google Scholar 

  28. R. Tuttle, Technical Report, Office of Naval Research, 2010

  29. C. Van der Eijk et al., ISIJ Int. 49(7), 1046–1050 (2009)

    Article  Google Scholar 

  30. H. Suito, ISIJ Int. 41(7), 748–756 (2001)

    Article  Google Scholar 

  31. A.L. Greer, Philos. Trans. R. Soc. Lond. A 361, 479–495 (2003)

    Article  Google Scholar 

  32. E.S. Dahle, A Master Thesis at the Norwegian University of Science and Technology, 2011

  33. M. Mizumoto, S. Sasaki, T. Ohgai, A. Kagawa, Int. J. Cast Met. Res. 21(1–4), 49–55 (2008)

    Article  Google Scholar 

  34. C. Wang et al., Metall. Mater. Trans. A 41(7), 1616–1620 (2010)

    Article  Google Scholar 

  35. S.N. Lekakh, R. O’Malley, M. Emmendorfer, B. Hrebec, ISIJ Int. 57(5), 824–832 (2017)

    Article  Google Scholar 

  36. Factsage 7.0 software (GTT-Technologies, Aachen), p. 811. www.gtt-technologies.de. Accessed 9 Jan 2018

  37. D. Kruger, A. Garbers-Craig, Metall. Mater. Trans. B 48(3), 1514–1532 (2017)

    Article  Google Scholar 

  38. X. Yin et al., Metall. Mater. Trans. B 47(6), 3274–3284 (2016)

    Article  Google Scholar 

  39. Thermo-Calc 2016a software (Thermo-Calc Software Inc., Sweden), www.thermocalc.com

  40. M. Harris et al., in AISTech Proceedings (2015), pp. 3315–3325

  41. S.N. Lekakh, IJMC 11(4), 743–748 (2017)

    Google Scholar 

  42. M. Qian, Acta Mater. 55(3), 943–953 (2007)

    Article  Google Scholar 

  43. D. Janis, R. Inoue, A. Karasev, P. Jönsson, Adv. Mater. Sci. Eng. 5(2), 1–7 (2014)

    Article  Google Scholar 

  44. SE-FIT Software (Portland State University), www.se-fit.com

  45. T.E. Quested, A.L. Greer, Acta Mater. 53(9), 2683–2692 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the industrial sponsors of the Kent D. Peaslee Steel Manufacturing Research Center for funding this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon N. Lekakh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arvola, D.A., Lekakh, S.N., O’Malley, R.J. et al. Two Inoculation Methods for Refining As-Cast Grain Structure in Austenitic 316L Steel. Inter Metalcast 13, 504–518 (2019). https://doi.org/10.1007/s40962-018-0260-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-018-0260-1

Keywords

Navigation