Skip to main content
Log in

Effect of Cooling Rate on the Grain Refinement of Mg–3Nd Alloys by Aluminum

  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

The effect of cooling rate on the grain refinement of Mg–3Nd alloys refined by Al was investigated in this work. The experimental results show that the grain size of Mg–Nd alloys can be refined by increasing the cooling rate and the Al addition. When the content of Al is more than 2%, Al2Nd particles can be observed inside the grains, which can be act as an effective nucleating site. The orientation relationship between Al2Nd particles and α-Mg matrix is determined as \( [101]_{{{\text{Al}}_{2} {\text{Nd}}}} \parallel [\bar{1}100]_{\text{Mg}} \), \( (\bar{2}22)_{{{\text{Al}}_{2} {\text{Nd}}}} \parallel (0002)_{\text{Mg}} \) and \( [\bar{1}11]_{{{\text{Al}}_{2} {\text{Nd}}}} \parallel [0001]_{\text{Mg}} \), \( (02\bar{2})_{{{\text{Al}}_{2} {\text{Nd}}}} \parallel (01\bar{1}0)_{\text{Mg}} \) by TEM analysis. The refining effect is affected by the size and the number density of Al2Nd particle. The minimum nucleating size of observed Al2Nd particle in Mg–3Nd–2Al and Mg–3Nd–3Al alloys decreases with increasing the cooling rate, which are 1.5 and 1 μm, when the cooling rate is 1.2 and 3.5 °C/s, respectively. The number density of Al2Nd particle in Mg–3Nd–2Al alloy increases with increasing the cooling rate from 0.3 to 1.2 °C/s and decreases with further increasing the cooling rate to 3.5 °C/s. And the number density of Al2Nd particle in Mg–3Nd–3Al alloy increases with increasing the cooling rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

References

  1. S. Saha, C. Ravindran, Grain refinement of AZ91E and Mg–9 wt% Al binary alloys using zinc oxide. Int. J. Metalcast. 9(1), 33–42 (2015)

    Article  CAS  Google Scholar 

  2. X.J. Wang, D.K. Xu, R.Z. Wu, X.B. Chen, Q.M. Peng, L. Jin, Y.C. Xin, Z.Q. Zhang, Y. Liu, X.H. Chen, G. Chen, K.K. Deng, H.Y. Wang, What is going on in magnesium alloys? J. Mater. Sci. Technol. 34, 245–247 (2018)

    Article  Google Scholar 

  3. Q. Wen, K.K. Deng, J.Y. Shi, B.P. Zhang, W. Liang, Effect of Ca addition on the microstructure and tensile properties of Mg–4.0Zn–2.0Gd alloys. Mater. Sci. Eng. A 609(27), 1–6 (2014)

    Article  CAS  Google Scholar 

  4. M.A. Easton, D.H. Stjohn, An analysis of the relationship between grain size, solute content, and the potency and number density of nucleant particles. Metall. Mater. Trans. A 36(7), 1911–1920 (2005)

    Article  Google Scholar 

  5. Y. Ali, D. Qiu, B. Jiang, F.S. Pan, M.X. Zhang, Current research progress in grain refinement of cast magnesium alloys: a review article. J. Alloys Compd. 619, 639–651 (2015)

    Article  CAS  Google Scholar 

  6. D. Qiu, M.X. Zhang, Effect of active heterogeneous nucleation particles on the grain refining efficiency in an Mg–10 wt% Y cast alloy. J. Alloy. Compd. 488(1), 260–264 (2009)

    Article  CAS  Google Scholar 

  7. F. Wang, Z.L. Liu, D. Qiu, J.A. Taylor, M.A. Easton, M.X. Zhang, Revisiting the role of peritectics in grain refinement of Al alloys. Acta Mater. 61(1), 360–370 (2013)

    Article  CAS  Google Scholar 

  8. G.K. Sigworth, T.A. Kuhn, Grain refinement of aluminum casting alloys. Int. J. Metalcast. 1(1), 31–40 (2007)

    Article  CAS  Google Scholar 

  9. G.Q. Li, J.H. Zhang, R.Z. Wu, Y. Feng, S.J. Liu, X.J. Wang, Y.F. Jiao, Q. Yang, J. Meng, Development of high mechanical properties and moderate thermal conductivity cast Mg alloy with multiple RE via heat treatment. J. Mater. Sci. Technol. (2017). https://doi.org/10.1016/j.jmst.2017.12.011

    Article  Google Scholar 

  10. X.H. Chen, Y.X. Geng, F.S. Pan, Microstructure, mechanical properties and electromagnetic shielding effectiveness of Mg–Y–Zr–Nd alloy. Rare Metal Mater. Eng. 45(1), 13–17 (2016)

    Article  Google Scholar 

  11. D. Qiu, M.X. Zhang, The nucleation crystallography and wettability of Mg grains on active Al2Y inoculants in an Mg–10 wt% Y alloy. J. Alloys Compd. 586(5), 39–44 (2014)

    Article  CAS  Google Scholar 

  12. D. Qiu, M.X. Zhang, P.M. Kelly, Crystallography of heterogeneous nucleation of Mg grains on Al2Y nucleation particles in an Mg–10 wt% Y alloy. Scr. Mater. 61(3), 312–315 (2009)

    Article  CAS  Google Scholar 

  13. P. Villars, L.D. Calvert, Pearson’s Handbook of Crystallographic Data for Intermetallic Phases (ASM international, Materials Park, 1991), p. 1032

    Google Scholar 

  14. J.C. Dai, M.A. Easton, S.M. Zhu, G.H. Wu, W.J. Ding, Grain refinement of Mg–10Gd alloy by Al additions. J. Mater. Res. 27(21), 2790–2797 (2012)

    Article  CAS  Google Scholar 

  15. C.L. Wang, J.C. Dai, W.C. Liu, L. Zhang, G.H. Wu, Effect of Al additions on grain refinement and mechanical properties of Mg–Sm alloys. J. Alloys Compd. 620, 172–179 (2015)

    Article  CAS  Google Scholar 

  16. Z.T. Jiang, B. Jiang, Y. Zeng, J.H. Dai, F.S. Pan, Role of Al modification on the microstructure and mechanical properties of as-cast Mg–6Ce alloy. Mater. Sci. Eng. A 645(5), 57–64 (2015)

    Article  CAS  Google Scholar 

  17. G. Atiya, M. Bamberger, A. Katsman, Microstructure and phase composition in a die cast Mg–Nd alloy. Int. J. Mater. Res. 103(10), 1277–1280 (2013)

    Article  Google Scholar 

  18. L. Wen, Z. Ji, X. Li, M. Xin, Effect of heat treatment on microstructure and mechanical properties of ZM6 alloy prepared by solid recycling process. J. Mater. Eng. Perform. 19(1), 107–111 (2010)

    Article  CAS  Google Scholar 

  19. J. Bai, Y.S. Sun, F. Xue, J. Qiang, Microstructures and creep properties of M–4Al–(1–4)La alloys produced by different casting techniques. Mater. Sci. Eng. A 552(9), 472–480 (2012)

    Article  CAS  Google Scholar 

  20. F. Yavari, S.G. Shabestari, Effect of cooling rate and Al content on solidification characteristics of AZ magnesium alloys using cooling curve thermal analysis. J. Therm. Anal. Calorim. 129, 1–8 (2017)

    Article  Google Scholar 

  21. J.C. Dai, M.A. Easton, M.X. Zhang, D. Qiu, X.Y. Xiong, W.C. Liu, G.H. Wu, Effects of cooling rate and solute content on the grain refinement of Mg–Gd–Y alloys by aluminum. Mater. Trans. A 45(10), 4665–4678 (2014)

    Article  CAS  Google Scholar 

  22. Y.F. Jiao, J.H. Zhang, L.L. He, M.L. Zhang, F.C. Jiang, W. Wang, L.M. Han, L.J. Xu, R.Z. Wu, Al–RE intermetallic phase stability and effects on corrosion behavior in cold-chamber HPDC AE44 alloy. Adv. Eng. Mater. 18(1), 148–155 (2016)

    Article  CAS  Google Scholar 

  23. H.W. Chang, D. Qiu, J.A. Taylor, M.A. Easton, M.X. Zhang, The role of Al2Y in grain refinement in Mg–Al–Y alloy system. J. Magn. Alloys 1(2), 115–121 (2013)

    Article  Google Scholar 

  24. Y.F. Wu, W.B. Du, Y.N. Zhang, T.Y. Zou, Microstructure and creep property of as-cast Mg–6Al–xNd (x = 2,4,6) Alloys. Adv. Mater. Res. 146–147, 1702–1707 (2011)

    Google Scholar 

  25. D.H. Stjohn, P. Cao, M. Qian, M.A. Easton, A new analytical approach to reveal the mechanisms of grain refinement. Adv. Eng. Mater. 9(9), 739–746 (2007)

    Article  CAS  Google Scholar 

  26. S.G. Shabestari, M. Malekan, Assessment of the effect of grain refinement on the solidification characteristics of 319 aluminum alloy using thermal analysis. J. Alloys Compd. 492(1–2), 134–142 (2010)

    Article  CAS  Google Scholar 

  27. D.M. Stefanescu, Thermal analysis—theory and applications in metalcasting. Int. J. Metalcast. 9(1), 7–22 (2015)

    Article  CAS  Google Scholar 

  28. M.A. Easton, D.H. Stjohn, Improved prediction of the grain size of aluminum alloys that includes the effect of cooling rate. Mater. Sci. Eng. A 486(1), 8–13 (2008)

    Article  Google Scholar 

  29. A.L. Greer, A.M. Bunn, A. Tronche, D.J. Bristow, Modelling of inoculation of metallic melts: application to grain refinement of aluminium by Al–Ti–B. Acta Mater. 48(11), 2823–2835 (2000)

    Article  CAS  Google Scholar 

  30. T.E. Quested, A.L. Greer, The effect of the size distribution of inoculant particles on as-cast grain size in aluminium alloys. Acta Mater. 52(13), 3859–3868 (2004)

    Article  CAS  Google Scholar 

  31. Y. Ali, G. You, F. Pan, M.X. Zhang, Grain coarsening of cast magnesium alloys at high cooling rate: a new observation. Metall. Mater. Trans. A 48(1), 474–481 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the Heilongjiang Province Natural Science Foundation (No. ZD2016011) and Harbin Science and Technology Innovation Talent Funding Project (No. 2016RAQXJ014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yicheng Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Feng, Y., Guo, E. et al. Effect of Cooling Rate on the Grain Refinement of Mg–3Nd Alloys by Aluminum. Inter Metalcast 12, 906–918 (2018). https://doi.org/10.1007/s40962-018-0224-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-018-0224-5

Keywords

Navigation