Advertisement

Journal of Quantitative Economics

, Volume 16, Issue 2, pp 595–611 | Cite as

A Note on Conditional Variance and Decaying Rate: Chinese Equity Market

  • Amanjot Singh
Notes and Short Article
  • 52 Downloads

Abstract

Conventional GARCH based models capture short run dependence structures in financial markets or shocks decaying at a faster exponential rate. However, the present study attempts to model long run dependence or memory in Chinese stock market volatility process by employing autoregressive (p)—fractionally integrated generalized autoregressive conditional heteroskedasticity model, i.e. AR (p)—FIGARCH model; following Bollerslev and Mikkelsen (J Econ 73(1):151–184, 1996) with a shift variable. Apart from FIGARCH (1, d, 1) model, conventional GARCH (p, 0, q) and Integrated GARCH (p, 1, q) based models are also employed in order to ensure comparability across integrated processes. The empirical findings advocate long run dependence structure in volatility process of Chinese equity market, whereby a shock to the future volatility decays at a slower hyperbolic rate. However, the integrated decaying parameter relates more to conventional GARCH (p, 0, q) model after considering structural breaks and foreign exchange rate movements, whereby exponential decaying rate is expected in the equity market. The findings bear strong implications for different market participants in their attempt to comprehend volatility component of the equity market.

Keywords

China Fractional integration GARCH US Volatility 

References

  1. Arouri, M.H., S. Hammoudeh, A. Lahiani, and D.K. Nguyen. 2012. Long memory and structural breaks in modeling the return and volatility dynamics of precious metals. The Quarterly Review of Economics and Finance 52: 207–218.CrossRefGoogle Scholar
  2. Baillie, R.T., and R.P. DeGennaro. 1990. Stock return and volatility. Journal of Financial and Quantitative Analysis 25 (2): 203–214. doi: 10.2307/2330824.CrossRefGoogle Scholar
  3. Baillie, R.T., T. Boilerslev, and H.O. Mikkelsen. 1996. Fractionally integrated generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 74 (1): 3–30. doi: 10.1016/S0304-4076(95)01749-6.CrossRefGoogle Scholar
  4. Bollerslev, T. 1986. Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 31 (3): 307–327. doi: 10.1016/0304-4076(86)90063-1.CrossRefGoogle Scholar
  5. Bollerslev, T., and J.M. Wooldridge. 1992. Quasi-maximum likelihood estimation and inference in dynamic models with time-varying covariances. Econometric Reviews 11 (2): 143–172. doi: 10.1080/07474939208800229.CrossRefGoogle Scholar
  6. Bollerslev, T., R.F. Engle, and D.B. Nelson. 1994. ARCH models. In Handbook of econometrics, vol. 4, ed. R.F. Engle, and D. McFadden. Amsterdam: North-Holland.Google Scholar
  7. Bollerslev, T., and H.O. Mikkelsen. 1996. Modeling and pricing long memory in stock market volatility. Journal of Econometrics 73 (1): 151–184. doi: 10.1016/0304-4076(95)01736-4.CrossRefGoogle Scholar
  8. Celik, S. 2012. The more contagion effect on emerging markets: The evidence of DCC-GARCH model. Economic Modelling 29 (5): 1946–1959. doi: 10.1016/j.econmod.2012.06.011.CrossRefGoogle Scholar
  9. Charfeddine, L. 2014. True or spurious long memory in volatility: Further evidence on the energy futures markets. Energy Policy 71: 76–93.CrossRefGoogle Scholar
  10. Chou, R.Y. 1988. Volatility persistence and stock valuations: Some empirical evidence using GARCH. Journal of Applied Econometrics 3 (4): 279–294. http://onlinelibrary.wiley.com/enhanced/exportCitation/doi/10.1002/jae.3950030404
  11. Demirer, R., and A.M. Kutan. 2006. Does herding behavior exist in Chinese stockmarkets? Journal of International Financial Markets, Institutions and Money 16 (2): 123–142. doi: 10.1016/j.intfin.2005.01.002.CrossRefGoogle Scholar
  12. Ding, Z., C.W.J. Granger, and R.F. Engle. 1993. A long memory property of stock market returns and a new model. Journal of Empirical Finance 1 (1): 83–106.CrossRefGoogle Scholar
  13. Engle, R.F., and T. Bollerslev. 1986. Modeling the persistence of conditional variances. Econometric Reviews 5 (1): 1–50. doi: 10.1080/07474938608800095.CrossRefGoogle Scholar
  14. Engle, R.F., and G.G. Lee. 1992. A permanent and transitory component model of stock return volatility. San Diego: Department of Economics, University of California.Google Scholar
  15. French, K.R., G.W. Schwert, and R.F. Stambaugh. 1987. Expected stock returns and volatility. Journal of Financial Economics 19 (1): 3–29. doi: 10.1016/0304-405X(87)90026-2.CrossRefGoogle Scholar
  16. Gadea, M.D., M. Sabate, and J.M. Serrano. 2004. Structural breaks and their trace in the memory inflation rate series in the long-run. Journal of International Financial Markets, Institutions and Money 14: 117–134.CrossRefGoogle Scholar
  17. Granger, C.W.J., and N. Hyung. 2004. Occasional structural breaks and long memory with an application to the S&P 500 absolute stock returns. Journal of Empirical Finance 11: 399–421.CrossRefGoogle Scholar
  18. Hammoudeh, S., and H. Li. 2008. Sudden changes in volatility in emerging markets: The case of Gulf Arab stock markets. International Review of Financial Analysis 17: 47–63.CrossRefGoogle Scholar
  19. Inclan, C., and G.C. Tiao. 1994. Use of cumulative sums of squares for retrospective detection of changes of variance. Journal of the American Statistical Association 89: 913–923.Google Scholar
  20. Kang, S.H., C. Cheong, and S. Yoon. 2010. Long memory volatility in Chinese stock markets. Physica A: Statistical Mechanics and its Applications 389 (7): 1425–1433. doi: 10.1016/j.physa.2009.12.004.CrossRefGoogle Scholar
  21. Kang, S.H., C. Cheong, and S.-M. Yoon. 2011. Structural changes and volatility transmission in crude oil markets. Physica A: Statistical Mechanics and its Applications 390: 4317–4324.CrossRefGoogle Scholar
  22. Kasman, A. 2009. The impact of sudden changes on the persistence of volatility: Evidence from the BRIC countries. Applied Economics Letters 16 (7): 759–764. doi: 10.1080/17446540802277138.CrossRefGoogle Scholar
  23. Kaur, P., and A. Singh. 2015. Investigating the leverage effect and volatility in the BRIC countries’ equity markets after the U.S. financial crisis. The Journal of Wealth Management 17 (4): 93–100. doi: 10.3905/jwm.2015.17.4.093.CrossRefGoogle Scholar
  24. Mensi, W., S. Hammoudeh, and S. Yoon. 2014a. Structural breaks and long memory in modeling and forecasting volatility of foreign exchange markets of oil exporters: The importance of scheduled and unscheduled news announcements. International Review of Economics and Finance 30: 101–119.CrossRefGoogle Scholar
  25. Mensi, W., S. Hammoudeh, and S. Yoon. 2014b. How do OPEC news and structural breaks impact returns and volatility in crude oil markets? Further evidence from a long memory process. Energy Economics 42: 343–354.CrossRefGoogle Scholar
  26. Nelson, D.B. 1990. Stationarity and persistence in the GARCH (I, I) model. Econometric Theory 6 (3): 318–334.CrossRefGoogle Scholar
  27. Nelson, D.B. 1991. Conditional heteroskedasticity in asset returns: A new approach. Econometrica 59 (2): 347–370.CrossRefGoogle Scholar
  28. Palamalai, S., M. Kalaivani, and C. Devakumar. 2013. Stock market linkages in emerging Asia-Pacific markets. SAGE Open 3 (4): 2158244013514060. doi: 10.1177/21582440135140.CrossRefGoogle Scholar
  29. Singh, A., and M. Singh. 2016. Cross country co-movement in equity markets after the US financial crisis: India and major economic giants. Journal of Indian Business Research 8 (2): 98–121. doi: 10.1108/JIBR-08-2015-0089.CrossRefGoogle Scholar
  30. Tripathy, N., and A. Garg. 2013. Forecasting stock market volatility: Evidence from six emerging markets. Journal of International Business and Economy 14 (2): 69–93.Google Scholar
  31. Vivian, A., and M.E. Wohar. 2012. Commodity volatility breaks. Journal of International Financial Markets, Institutions & Money 22: 395–422.CrossRefGoogle Scholar
  32. Weiss, A.A. 1986. Asymptotic theory for ARCH models: Estimation and testing. Econometric Theory 2 (1): 107–131.CrossRefGoogle Scholar
  33. Zhang, L. (2014). Testing for long memory volatility of Chinese stock markets with FIGARCH model. In International conference on management science and engineering 21th annual conference proceedings, 1450–1455. IEEE, 17–19 Aug 2014.Google Scholar
  34. Zhu, S., and M. Lee. 2010. Long memory in the volatility of China stock returns. China Economic Journal 2 (3): 313–323. doi: 10.1080/17538960903529543.CrossRefGoogle Scholar

Copyright information

© The Indian Econometric Society 2017

Authors and Affiliations

  1. 1.University School of Applied ManagementPunjabi UniversityPatialaIndia

Personalised recommendations