Effects of bedding orientation on the failure pattern and acoustic emission activity of shale under uniaxial compression

Abstract

The bedding orientation influences the failure pattern and brittleness of shale. Clarifying the relation between acoustic emission and the effects of bedding orientation on the failure behaviors of shale is important to understand the mechanism of the formation of fracture networks. In this study, we analyzed the failure patterns and crack complexity of the shale specimens with various bedding orientations under uniaxial compression using X-ray computed tomography. We proposed an improved criterion based on the acoustic emission waveform parameters to identify the mechanism of the acoustic emission events and showed that the failure mechanism changed from tension to shear during the failure process of each specimen because the shear cracks link independent tensile cracks to form macrofractures in the later loading stage. The proportion of shear-mode events in the specimens declined when the bedding orientation angle increased from 0° to 90°, whereas that of the tensile-mode events exhibited an opposite trend; these changes were consistent with the observation results of X-ray images, indicating the transition of the dominant failure mechanisms with the bedding orientation. The large b value of the acoustic emission events corresponded to a complex crack distribution; thus, this b value may be useful to evaluate the brittleness of shale. These results denote the relation between the mechanisms of the failure patterns in shale and the acoustic emission activity and improve our recognition to the fracture network characteristics.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Aggelis DG (2011) Classification of cracking mode in concrete by acoustic emission parameters. Mech Res Commun 38:153–157. https://doi.org/10.1016/j.mechrescom.2011.03.007

    Article  Google Scholar 

  2. Aki K (1981) A probabilistic synthesis of precursory phenomena. In: Simpson DW, Richards PG (eds) Maurice Ewing Series, vol 4. Earthquake prediction: An International Review. American Geophysical Union, Washington, D.C., pp 566–574. https://doi.org/10.1029/ME004p0566

  3. Amann F, Button EA, Evans KF, Gischig VS, Blümel M (2011) Experimental study of the brittle behavior of clay shale in rapid unconfined compression. Rock Mech Rock Eng 44:415–430. https://doi.org/10.1007/s00603-011-0156-3

    Article  Google Scholar 

  4. Bourne SJ (2003) Contrast of elastic properties between rock layers as a mechanism for the initiation and orientation of tensile failure under uniform remote compression. J Geophys Res Solid Earth. https://doi.org/10.1029/2001jb001725

    Article  Google Scholar 

  5. Cho J-W, Kim H, Jeon S, Min K-B (2012) Deformation and strength anisotropy of Asan gneiss, Boryeong shale, and Yeoncheon schist. Int J Rock Mech Min Sci 50:158–169. https://doi.org/10.1016/j.ijrmms.2011.12.004

    Article  Google Scholar 

  6. Datt P, Kapil JC, Kumar A (2015) Acoustic emission characteristics and b-value estimate in relation to waveform analysis for damage response of snow. Cold Reg Sci Technol 119:170–182. https://doi.org/10.1016/j.coldregions.2015.08.005

    Article  Google Scholar 

  7. Duan Y, Li X, Zheng B, He J, Hao J (2019) Cracking evolution and failure characteristics of Longmaxi shale under uniaxial compression using real-time computed tomography scanning. Rock Mech Rock Eng 52:3003–3015. https://doi.org/10.1007/s00603-019-01765-0

    Article  Google Scholar 

  8. Geng Z, Chen M, Jin Y, Yang S, Yi Z, Fang X, Du X (2016) Experimental study of brittleness anisotropy of shale in triaxial compression. J Nat Gas Sci Eng 36:510–518. https://doi.org/10.1016/j.jngse.2016.10.059

    Article  Google Scholar 

  9. Guo T, Zhang S, Ge H, Wang X, Lei X, Xiao B (2015) A new method for evaluation of fracture network formation capacity of rock. Fuel 140:778–787. https://doi.org/10.1016/j.fuel.2014.10.017

    Article  Google Scholar 

  10. Gutenberg B, Richter CF (1954) Seismicity in the Earth and associated phenomena. Princeton University Press, Princeton

    Google Scholar 

  11. He B, Xie LZ, Li FX, Zhao P, Zhang Y (2017) Anisotropic mechanism and characteristics of deformation and failure of Longmaxi shale. Sci Sin 47:107–118. https://doi.org/10.1360/SSPMA2016-00534

    Article  Google Scholar 

  12. Holt RM, Fjær E, Stenebråten JF, Nes O-M (2015) Brittleness of shales: relevance to borehole collapse and hydraulic fracturing. J Pet Sci Eng 131:200–209. https://doi.org/10.1016/j.petrol.2015.04.006

    Article  Google Scholar 

  13. Hou P, Gao F, Yang Y, Zhang X, Zhang Z (2016) Effect of the layer orientation on mechanics and energy evolution characteristics of shales under uniaxial loading. Int J Min Sci Technol 26:857–862. https://doi.org/10.1016/j.ijmst.2016.05.041

    Article  Google Scholar 

  14. King GCP, Sammis CG (1992) The mechanisms of finite brittle strain. Pure Appl Geophys 138:611–640. https://doi.org/10.1007/BF00876341

    Article  Google Scholar 

  15. Kratz M, Aulia A, Hill A (2012) Identifying fault activation in shale reservoirs using microseismic monitoring during hydraulic stimulation: source mechanisms, b values and energy release rates. CSEG Rec 37:20–28

    Google Scholar 

  16. Lajtai EZ, Lajtai VN (1975) The collapse of cavities. Int J Rock Mech Min Sci Geomech Abstr 12:81–86. https://doi.org/10.1016/0148-9062(75)90001-7

    Article  Google Scholar 

  17. Lee B, Rathnaweera TD (2016) Stress threshold identification of progressive fracturing in Bukit Timah granite under uniaxial and triaxial stress conditions. Geomech Geophys Geo-energy Geo-resour 2:301–330. https://doi.org/10.1007/s40948-016-0037-z

    Article  Google Scholar 

  18. Li X, Lei X, Li Q, Li X (2017) Experimental investigation of Sinian shale rock under triaxial stress monitored by ultrasonic transmission and acoustic emission. J Nat Gas Sci Eng 43:110–123. https://doi.org/10.1016/j.jngse.2017.03.035

    Article  Google Scholar 

  19. Li ZQ, Li XL, Yu JB, Cao WD, Liu ZF, Wang M, Liu ZF, Wang XH (2020) Influence of existing natural fractures and beddings on the formation of fracture network during hydraulic fracturing based on the extended finite element method. Geomech Geophys Geo-energy Geo-resour 6:58. https://doi.org/10.1007/s40948-020-00180-y

    Article  Google Scholar 

  20. Lin C, He J, Li X, Wan X, Zheng B (2017) An experimental investigation into the effects of the anisotropy of shale on hydraulic fracture propagation. Rock Mech Rock Eng 50:543–554. https://doi.org/10.1007/s00603-016-1136-4

    Article  Google Scholar 

  21. Liu D, Wang Z, Zhang X, Wang Y, Zhang X, Li D (2018) Experimental investigation on the mechanical and acoustic emission characteristics of shale softened by water absorption. J Nat Gas Sci Eng 50:301–308. https://doi.org/10.1016/j.jngse.2017.11.020

    Article  Google Scholar 

  22. Liu X, Zhang H, Wang X, Zhang C, Xie H, Yang S, Lu W (2019) Acoustic emission characteristics of graded loading intact and holey rock samples during the damage and failure process. Appl Sci 9:1595. https://doi.org/10.3390/app9081595

    Article  Google Scholar 

  23. Mandelbrot BB (1983) The fractal geometry of nature, vol 173. WH freeman, New York

    Google Scholar 

  24. Mandelbrot BB, Passoja DE, Paullay AJ (1984) Fractal character of fracture surfaces of metals. Nature 308:721–722. https://doi.org/10.1038/308721a0

    Article  Google Scholar 

  25. Martin CD, Chandler NA (1994) The progressive fracture of Lac du Bonnet granite. Int J Rock Mech Min Sci Geomech Abstr 31:643–659. https://doi.org/10.1016/0148-9062(94)90005-1

    Article  Google Scholar 

  26. Michlmayr G, Cohen D, Or D (2012) Sources and characteristics of acoustic emissions from mechanically stressed geologic granular media—a review. Earth-Sci Rev 112:97–114. https://doi.org/10.1016/j.earscirev.2012.02.009

    Article  Google Scholar 

  27. Morgan SP, Johnson CA, Einstein HH (2013) Cracking processes in Barre granite: fracture process zones and crack coalescence. Int J Fract 180:177–204. https://doi.org/10.1007/s10704-013-9810-y

    Article  Google Scholar 

  28. Nasseri MH, Rao KS, Ramamurthy T (1997) Failure mechanism in schistose rocks. Int J Rock Mech Min Sci 34:219.e211-219.e215. https://doi.org/10.1016/S1365-1609(97)00099-3

    Article  Google Scholar 

  29. Nicksiar M, Martin CD (2012) Evaluation of methods for determining crack initiation in compression tests on low-porosity rocks. Rock Mech Rock Eng 45:607–617. https://doi.org/10.1007/s00603-012-0221-6

    Article  Google Scholar 

  30. Ohno K, Ohtsu M (2010) Crack classification in concrete based on acoustic emission. Constr Build Mater 24:2339–2346. https://doi.org/10.1016/j.conbuildmat.2010.05.004

    Article  Google Scholar 

  31. Ohtsu M (1991) Simplified moment tensor analysis and unified decomposition of acoustic emission source: application to in situ hydrofracturing test. J Geophys Res Solid Earth 96:6211–6221. https://doi.org/10.1029/90jb02689

    Article  Google Scholar 

  32. Peng S, Johnson AM (1972) Crack growth and faulting in cylindrical specimens of Chelmsford granite. Int J Rock Mech Min Sci Geomech Abstr 9:37–86. https://doi.org/10.1016/0148-9062(72)90050-2

    Article  Google Scholar 

  33. Pickering G, Bull JM, Sanderson DJ (1995) Sampling power-law distributions. Tectonophysics 248:1–20

    Article  Google Scholar 

  34. Ranjith PG, Fourar M, Pong SF, Chian W, Haque A (2004) Characterisation of fractured rocks under uniaxial loading states. Int J Rock Mech Min Sci 41:43–48. https://doi.org/10.1016/j.ijrmms.2004.03.017

    Article  Google Scholar 

  35. Sarout J, Le Gonidec Y, Ougier-Simonin A, Schubnel A, Guéguen Y, Dewhurst DN (2017) Laboratory micro-seismic signature of shear faulting and fault slip in shale. Phys Earth Planet Inter 264:47–62. https://doi.org/10.1016/j.pepi.2016.11.005

    Article  Google Scholar 

  36. Scholz CH (1968) Microfracturing and the inelastic deformation of rock in compression. J Geophys Res 73:1417–1432. https://doi.org/10.1029/JB073i004p01417

    Article  Google Scholar 

  37. Shiotani T, Ohtsu M, Ikeda K (2001) Detection and evaluation of AE waves due to rock deformation. Constr Build Mater 15:235–246. https://doi.org/10.1016/S0950-0618(00)00073-8

    Article  Google Scholar 

  38. Soulioti D, Barkoula NM, Paipetis A, Matikas TE, Shiotani T, Aggelis DG (2009) Acoustic emission behavior of steel fibre reinforced concrete under bending. Constr Build Mater 23:3532–3536. https://doi.org/10.1016/j.conbuildmat.2009.06.042

    Article  Google Scholar 

  39. Stanchits S, Vinciguerra S, Dresen G (2006) Ultrasonic velocities, acoustic emission characteristics and crack damage of basalt and granite. Pure Appl Geophys 163:975–994. https://doi.org/10.1007/s00024-006-0059-5

    Article  Google Scholar 

  40. Tarasov B, Potvin Y (2013) Universal criteria for rock brittleness estimation under triaxial compression. Int J Rock Mech Min Sci 59:57–69. https://doi.org/10.1016/j.ijrmms.2012.12.011

    Article  Google Scholar 

  41. Tien YM, Kuo MC, Juang CH (2006) An experimental investigation of the failure mechanism of simulated transversely isotropic rocks. Int J Rock Mech Min Sci 43:1163–1181. https://doi.org/10.1016/j.ijrmms.2006.03.011

    Article  Google Scholar 

  42. Valès F, Nguyen Minh D, Gharbi H, Rejeb A (2004) Experimental study of the influence of the degree of saturation on physical and mechanical properties in Tournemire shale (France). Appl Clay Sci 26:197–207. https://doi.org/10.1016/j.clay.2003.12.032

    Article  Google Scholar 

  43. Wang Y, Hou ZQ, Hu YZ (2018) In situ X-ray micro-CT for investigation of damage evolution in black shale under uniaxial compression. Environ Earth Sci 77:717. https://doi.org/10.1007/s12665-018-7904-6

    Article  Google Scholar 

  44. Wang C et al (2019) Shale lamination and its influence on shale reservoir quality of Wufeng Formation-Longmaxi Formation in Jiaoshiba area. Earth Sci 44:972–982. https://doi.org/10.3799/dqkx.2019.018

    Article  Google Scholar 

  45. Wangen M (2019) A 3D model of hydraulic fracturing and microseismicity in anisotropic stress fields. Geomech Geophys Geo-energy Geo-resour 5:17–35. https://doi.org/10.1007/s40948-018-0096-4

    Article  Google Scholar 

  46. Wu S, Ge H, Wang X, Meng F (2017) Shale failure processes and spatial distribution of fractures obtained by AE monitoring. J Nat Gas Sci Eng 41:82–92. https://doi.org/10.1016/j.jngse.2017.02.015

    Article  Google Scholar 

  47. Xu F et al (2017) Effect of bedding planes on wave velocity and AE characteristics of the Longmaxi shale in China. Arab J Geosci 10:141. https://doi.org/10.1007/s12517-017-2943-y

    Article  Google Scholar 

  48. Yin PF, Yang SQ (2020) Experimental study on strength and failure behavior of transversely isotropic rock-like material under uniaxial compression. Geomech Geophys Geo-energy Geo-resour 6:44. https://doi.org/10.1007/s40948-020-00168-8

    Article  Google Scholar 

  49. Zhang B (2017) Investigation on the morphological characteristics of hydraulic fracture in Longmaxi shale. Ph.D. thesis. University of Chinese Academy of Sciences

  50. Zhang DC, Ranjith PG, Perera MSA (2016) The brittleness indices used in rock mechanics and their application in shale hydraulic fracturing: a review. J Pet Sci Eng 143:158–170. https://doi.org/10.1016/j.petrol.2016.02.011

    Article  Google Scholar 

  51. Zhou M, Zhang Y, Zhou R, Hao J, Yang J (2018) Mechanical property measurements and fracture propagation analysis of Longmaxi shale by micro-CT uniaxial compression. Energies 11:1409. https://doi.org/10.3390/en11061409

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Li Guoliang and Ms Niu Suyun (Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences) for assistance in CT imaging and dataset processing, Miss Zhang Ke (Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences) for assisting with the calculation of the fractal dimension. We would also like to thank Enago for reviewing the language of our manuscript.

Funding

This work was supported by the Strategic Priority Research Program of Chinese Academy of Sciences [Grant Numbers XDA14050101, XDA14020401 and XDB10030302], the National Key Research and Develop Program of China [Grant Number 2019YFA0708301], the China Postdoctoral Science Foundation [Grant Number 2018M640181], and the National Natural Science Foundation of China [Grant Number 41602330].

Author information

Affiliations

Authors

Contributions

CH: Conceptualization, Formal analysis, Investigation, Original draft preparation. DQ: Conceptualization, Resources, Review, and Editing. ZW: Conceptualization, Review, and Editing. LY: Investigation, Original draft preparation. NJ: Resources.

Corresponding author

Correspondence to Qingyun Di.

Ethics declarations

Conflict of interest

All the authors of this manuscript have approved the article’s submission for publication, and there are no conflicts of interest to declare. This paper has not been published elsewhere and is not under consideration by another journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Di, Q., Zhang, W. et al. Effects of bedding orientation on the failure pattern and acoustic emission activity of shale under uniaxial compression. Geomech. Geophys. Geo-energ. Geo-resour. 7, 20 (2021). https://doi.org/10.1007/s40948-021-00216-x

Download citation

Keywords

  • Shale
  • Bedding orientation
  • Acoustic emission
  • Computed tomography
  • Failure pattern
  • Brittleness