Glass Structures & Engineering

, Volume 3, Issue 2, pp 303–319 | Cite as

A numerical and experimental approach to cold-bent timber-glass composite elements

  • Felix Nicklisch
  • Tim Greulich
  • Bernhard Weller
SI: Challenging Glass paper


The current rise of wooden constructions, which is encouraged by a strong trend towards sustainability of our buildings, also engenders innovation in facade design and materials. Timber-glass composite elements are a novel interpretation of the structural sealant glazing concept aiming at a reduction of the carbon footprint of facades by using materials from renewable resources. Already available facade systems based on the principle of timber-glass composite construction are applied in curtain walls, which is a rather conventional way. This paper assesses the feasibility of cold bended timber-glass composite elements to widen the scope of possible applications to curved or freeform surfaces such as timber grid shells. Cold bending appears an efficient way to adopt the flat element to a non-regularly shaped substructure. The twisting from an initial undeformed to a deflected state leads to permanent stresses in the glass as well as in the adhesive joint, the adapter and the screwed connection. Numerical models of a rectangular and a square-shaped timber-glass composite element help to understand the mechanical reactions in the individual components and the joint. The virtual components are deflected on one corner while the other three remain in plane. The cold bending of such elements is additionally assessed in life-size experiments. Shape and size correlate to those used in the numerical models to enable a validation of the virtual model. The derived stresses and time-depended deformations of the deflected test specimens yield a better understanding of the structural behavior and design of timber-glass composite elements.


Bent glass Timber-glass composite Structural sealant Sustainability Numerical simulation Life-size test 



The authors would like to thank the Petschenig Glastec GmbH, Austria for its support through the production of timber-glass-composite specimen components.


The study was performed on the basis of budgetary resources. The authors received no further funding from a third party.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.


  1. Bijster, J., Noteboom, C., Eekhout, M.: Glass entrance Van Gogh Museum Amsterdam. Glass Struct. Eng. 1, 205–231 (2016).
  2. Buchanan, A.H.: The challenges for designers of tall timber buildings. In: Eberhardsteiner, J., Winter, W., Fadai, A., Pöll, M. (eds.) CD-ROM Proceedings of the World Conference on Timber Engineering (WCTE 2016), August 22–25, 2016, Vienna, Austria. Vienna University of TechnologyGoogle Scholar
  3. Datsiou, K.C., Overend, M.: The mechanical response of cold bent monolithic glass plates during the bending process. Eng. Struct. 117, 575–590 (2016).
  4. Detail Daily: Shigeru Ban builds for Swatch. DETAIL Business Information GmbH. (2012). Accessed 15 Jan 2018
  5. Eekhout, M., Niderehe, S.: The new, cold bent glass roof of the Victoria & Albert Museum, London. In: Proceedings of Glass Performance Days 2009, Tampere, Finland, pp. 408–412 (2009)Google Scholar
  6. Eekhout, M, Staaks, D.: Gold deformation of glass. In: Proceedings International Symposium on the Application of Architectural Glass 2004. München (2004)Google Scholar
  7. Edl, T.: Entwicklung von wandartig verklebten Holz-Glas-Verbundelementen und Beurteilungen des Tragverhaltens als Aussteifungsscheibe. Doctoral thesis, Technische Universität Wien (2008)Google Scholar
  8. Engelsmann, S., Spalding, V., Peters, S.: Kunststoffe in Architektur und Konstruktion. Birkhäuser, Basel (2013)Google Scholar
  9. Eversmann, P., Ihde, A., Louter, C.: Low cost double curvature—exploratory computational modelling, FE-analysis and prototyping of cold-bent glass. In: Challenging glass 5—conference on architectural and structural applications of glass. Ghent University (2016)Google Scholar
  10. Galuppi, L., Massimiani, S., Royer-Carfagni, G.: Buckling phenomena in double curved cold-bent glass. Int. J. Non Linear Mech. 64, 70–84 (2014).
  11. Hamm J.: Development of timber-glass prefabricated structural elements. In: Innovative Wooden Structures and Bridges. IABSE Conference Report, vol. 85, pp. 41–46 (2001)Google Scholar
  12. Hochhauser, W., Winter, W., Fadai, A.: Entwicklung von verklebten Holz-Glaskonstruktionen, Bemessung und Anwendung [Development of load bearing timber-glass composites. Design and application]. In: Weller, B., Tasche, S. (eds.) Glasbau 2013, pp. 186–191. Ernst & Sohn, Berlin (2013)Google Scholar
  13. Kaufmann, H., Krötsch, S., Winter, S.: Atlas Mehrgeschossiger Holzbau. Edition Detail, München (2017)CrossRefGoogle Scholar
  14. Knapp GmbH FASCO\({\textregistered }\)-Fassadensystem. Verklebte Glaselemente für den modernen Holz- und Metallbau. Knapp GmbH, Euratsfeld (2013)Google Scholar
  15. Laufs, W., Vilkner, G.: Gekrümmte Glasflächen - Zusammenspiel von Geometrie und Glasdetaillierung. Stahlbau 79, 16–21 (2010).
  16. Nicklisch, F.: Holz-Glas-Verbund - Fassadensysteme mit aussteifender Wirkung. Konstruktiver Ingenieurbau (5), 39–48 (2017)Google Scholar
  17. Nicklisch, F., Giese-Hinz, J., Weller, B.: Glued windows and timber-glass facades–performance of a silicone joint between glass and different types of wood. In: Schneider, J., Weller, B. (eds.) Engineered Transparency 2016–Glass in Architecture and Structural Engineering, pp. 598–602. Ernst & Sohn, Berlin (2016)Google Scholar
  18. Niedermaier P.: Holz-Glas-Verbundkonstruktionen. Ein Beitrag zur Aussteifung von filigranen Holztragwerken. Doctoral thesis, Technische Universität München (2005)Google Scholar
  19. Otto, K., Kloft, H., Mähl, F., Sastré, H.: Multifunktionale, sphärisch gebogene Oberlichtverglasung für das Städel Museum. In: Weller, B., Tasche, S. (eds.) Glasbau 2012, pp. 12–27. Ernst & Sohn, Berlin (2012)CrossRefGoogle Scholar
  20. Rietbergen, D.: Shaping techniques for freely curved architectural glass. In: Proceedings of Glass Performance Days 2009, Tampere, Finland, pp. 801–805 (2009)Google Scholar
  21. Sastré, H.: Die optimale Haut – Mit Laminationsbiegen zur perfekten gläsernen Haut. DBZ Deutsche Bauzeitschrift. 58. Ausgabe 11/2010, pp. 58–61 (2010)Google Scholar
  22. Schober, K.P. et al.: Grundlagen zur Entwicklung einer neuen Holzfenstergeneration. Endbericht 1. Projektjahr. Holzforschung Austria, Wien (2006)Google Scholar
  23. Schober, K.P. et al.: Grundlagen zur Entwicklung einer neuen Holzfenstergeneration. Endbericht 2. Projektjahr. Holzforschung Austria, Wien (2007)Google Scholar
  24. Schuler, C., Elstner, M., Illguth, M., Stief, S., Lorenz, A.: Einsatz von gebogenem Glas im Bauwesen [Application of curved glass in architecture]. Stahlbau 81, 190–196 (2012).
  25. Staaks, D.: ‘Cold Bent Glass Sheets in Blobs’, (‘Koud torderen van glaspanelen in blobs’). M.Sc. thesis, University of Technology Eindhoven (2003)Google Scholar
  26. UNIGLAS GmbH: Holz-Glas-Verbundfassade. Detail Green 01/15, 82 (2015)Google Scholar
  27. UNIGLAS GmbH: Handbuch für die Planung und Erstellung von UNIGLAS\(^{{\textregistered }}\) | FACADE Holz-Glas-Verbundelementen. 2. Auflage. uniGlas\(^{{\textregistered }}\) GmbH & Co. KG, Montabaur (2016)Google Scholar
  28. Weber, F.: Curved glass structures. In: Proceedings of Glass Performance Days 2009, Tampere, Finland, pp. 375–380 (2009)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Building ConstructionTechnische Universität DresdenDresdenGermany

Personalised recommendations