Skip to main content

Advertisement

Log in

Spatiotemporal LULC change impacts on groundwater table in Jhargram, West Bengal, India

  • Original Article
  • Published:
Sustainable Water Resources Management Aims and scope Submit manuscript

Abstract

Groundwater resources are the significant factor for maintaining life. The land use/cover (LULC) change and its effect on the groundwater table would enhanced land use and groundwater management for arid areas. This paper proposes a technique to LULC effects on the groundwater table. LULC extract based on time-series Landsat imagery (1988, 1993, 1998, 2003, 2007, 2013 and 2017) and its effect on the groundwater table. SVM algorithm used for classification of LULC features and its higher accuracy. In the study area, groundwater data (2001–2012) used for groundwater table change analysis. The result showed that 1.03 mbgl (Metres Below Ground Level) groundwater decreased in the study area. Analysis of the time-series climate data (1988–2014) based on the study area shows apex’s for maximum temperature increased between 0.2 and 0.8 °C and 0.3 to 1.5 °C for minimum apexes. At the same time, analysis of historical rainfall data indicated that rainfall decreased by 10 mm, respectively during the years 1988–2014. The classification results showed that the SVM algorithm overall accuracy of 86.67% and the kappa coefficient of 0.82. The relationships among LULC and, climate, groundwater change values showed both positive and negative correlations. This paper highlighted the LULC change effect on the groundwater table change in arid areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmed B, Ahmed R (2012) Modeling urban land cover growth dynamics using multitemporal satellite images: a case study of Dhaka, Bangladesh. ISPRS Int J Geo-Inf 1(1):3–31

    Article  Google Scholar 

  • Batelaan O, De Smedt F, Triest L (2003) Regional groundwater discharge: phreatophyte mapping, groundwater modelling and impact analysis of land-use change. J Hydrol 275(1–2):86–108

    Article  Google Scholar 

  • Baumert KA, Blanchard O, Llosa S, Perkaus JF (2002) Options for protecting the climate. World Resources Institute, Washington, DC

    Google Scholar 

  • Bruzzone L, Chi M, Marconcini M (2006) A novel transductive SVM for semisupervised classification of remote-sensing images. IEEE Trans Geosci Remote Sens 44(11):3363–3373

    Article  Google Scholar 

  • Burbidge R, Trotter M, Buxton B, Holden S (2001) Drug design by machine learning: support vector machines for pharmaceutical data analysis. Comput Chem 26(1):5–14

    Article  Google Scholar 

  • Burrough PA (1986) Principles of geographical information systems for land resources assessment. Oxford University Press, Oxford

    Book  Google Scholar 

  • Butt A, Shabbir R, Ahmad SS, Aziz N (2012) Land use change mapping and analysis using remote sensing and GIS: a case study of Simly watershed, Islamabad, Pakistan. Egypt J Remote Sens Space Sci 18(2):251–259

    Google Scholar 

  • Chauhan HB, Nayak S (2005) Land use/land cover changes near Hazira Region, Gujarat using remote sensing satellite data. J Indian Soc Remote Sens 33(3):413–420

    Article  Google Scholar 

  • Da C, Jesus E, Marsh TL, Tiedje JM, de S Moreira FM (2009) Changes in land use alter the structure of bacterial communities in Western Amazon soils. ISME J 3(9):1004–1011

    Article  Google Scholar 

  • Deng JS, Wang K, Hong Y, Qi JG (2009) Spatio-temporal dynamics and evolution of land use change and landscape pattern in response to rapid urbanization. Landsc Urban Plan 92(3):187–198

    Article  Google Scholar 

  • Dimyati M, Mizuno K, Kobayashi S, Kitamura T (1996) An analysis of land use/cover change in Indonesia. Int J Remote Sens 17(5):931–944

    Article  Google Scholar 

  • Elsheikh R, Shariff ARBM, Amiri F, Ahmad NB, Balasundram SK, Soom MAM (2013) Agriculture land suitability evaluator (ALSE): a decision and planning support tool for tropical and subtropical crops. Comput Electron Agric 93:98–110

    Article  Google Scholar 

  • Erwin KL (2009) Wetlands and global climate change: the role of wetland restoration in a changing world. Wetl Ecol Manag 17(1):71

    Article  Google Scholar 

  • Foody GM (2002) Status of land cover classification accuracy assessment. Remote Sens Environ 80(1):185–201

    Article  Google Scholar 

  • Gu W, Lv Z, Hao M (2017) Change detection method for remote sensing images based on an improved Markov random field. Multimed Tools Appl 76(17):17719–17734

    Article  Google Scholar 

  • Gunn SR (1998) Support vector machines for classification and regression. ISIS Tech Rep 14:85–86

    Google Scholar 

  • Gyamfi C, Ndambuki JM, Salim RW (2016) Hydrological responses to land use/cover changes in the Olifants Basin, South Africa. Water 8(12):588

    Article  Google Scholar 

  • Harbor JM (1994) A practical method for estimating the impact of land-use change on surface runoff, groundwater recharge and wetland hydrology. J Am Plan Assoc 60(1):95–108

    Article  Google Scholar 

  • Hays GC, Richardson AJ, Robinson C (2005) Climate change and marine plankton. Trends Ecol Evol 20(6):337–344

    Article  Google Scholar 

  • Islam K, Jashimuddin M, Nath B, Nath TK (2017) Land use classification and change detection by using multi-temporal remotely sensed imagery: the case of Chunati wildlife sanctuary, Bangladesh. Egypt J Remote Sens Space Sci 21:37–47

    Google Scholar 

  • Jain M, Dawa D, Mehta R, Dimri AP, Pandit MK (2016) Monitoring land use change and its drivers in Delhi, India using multi-temporal satellite data. Model Earth Syst Environ 2(1):19

    Article  Google Scholar 

  • Karl TR (ed) (2009) Global climate change impacts in the United States. Cambridge University Press, Cambridge

    Google Scholar 

  • Kayet N, Pathak K (2015) Remote sensing and GIS based land use/land cover change detection mapping in Saranda Forest, Jharkhand, India. Int Res J Earth Sci 3(10):1–6

    Google Scholar 

  • Kayet N, Pathak K, Chakrabarty A, Sahoo S (2016a) Spatial impact of land use/land cover change on surface temperature distribution in Saranda Forest, Jharkhand. Model Earth Syst Environ 2(3):1–10

    Article  Google Scholar 

  • Kayet N, Pathak K, Chakrabarty A, Sahoo S (2016b) Urban heat island explored by co-relationship between land surface temperature vs multiple vegetation indices. Spat Inf Res 24(5):515–529

    Article  Google Scholar 

  • Kulabako NR, Nalubega M, Thunvik R (2007) Study of the impact of land use and hydrogeological settings on the shallow groundwater quality in a peri-urban area of Kampala, Uganda. Sci Total Environ 381(1–3):180–199

    Article  Google Scholar 

  • Li S, Yang H, Lacayo M, Liu J, Lei G (2018) Impacts of land-use and land-cover changes on water yield: a case study in Jing-Jin-Ji. China Sustain 10(4):960

    Article  Google Scholar 

  • Mandal K, Chatterjee S, Chatterjee ND (2015) Delineating sphere of urban influence: the case of three early urban centres of Eastern India. IOSR J Human Soc Sci 20(1):91–100

    Google Scholar 

  • McCracken SD, Brondizio ES, Nelson D, Moran EF, Siqueira AD, Rodriguez-Pedraza C (1999) Remote sensing and GIS at farm property level: demography and deforestation in the Brazilian Amazon. Photogramm Eng Remote Sens 65:1311–1320

    Google Scholar 

  • Melgani F, Bruzzone L (2004) Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans Geosci Remote Sens 42(8):1778–1790

    Article  Google Scholar 

  • Misra AK (2014) Climate change and challenges of water and food security. Int J Sustain Built Environ 3(1):153–165

    Article  Google Scholar 

  • Ozesmi SL, Bauer ME (2002) Satellite remote sensing of wetlands. Wetl Ecol Manag 10(5):381–402

    Article  Google Scholar 

  • Pielke RA (2005) Land use and climate change. Science 310(5754):1625–1626

    Article  Google Scholar 

  • Rahbeh M, Chanasyk D, Miller J (2011) Two-way calibration-validation of SWAT model for a small prairie watershed with short observed record. Can Water Resour J 36(3):247–270

    Article  Google Scholar 

  • Roy PS, Giriraj A (2008) Land use and land cover analysis in Indian Context. J Appl Sci 8(8):1346–1353

    Article  Google Scholar 

  • Roy PS, Roy A (2012) Land use and land cover change in India: a remote sensing and GIS prespective. J Indian Inst Sci 90(4):489–502

    Google Scholar 

  • Sahoo S, Dhar A, Kayet N, Kar A (2017) Detecting water stress scenario by land use/land cover changes in an agricultural command area. Spat Inf Res 25(1):11–21

    Article  Google Scholar 

  • Salman SA, Shahid S, Mohsenipour M, Asgari H (2018) Impact of landuse on groundwater quality of Bangladesh. Sustain Water Resour Manag. https://doi.org/10.1007/s40899-018-0230-z

    Article  Google Scholar 

  • Scanlon BR, Reedy RC, Stonestrom DA, Prudic DE, Dennehy KF (2005) Impact of land use and land cover change on groundwater recharge and quality in the southwestern US. Glob Change Biol 11(10):1577–1593

    Article  Google Scholar 

  • Secunda S, Collin ML, Melloul AJ (1998) Groundwater vulnerability assessment using a composite model combining DRASTIC with extensive agricultural land use in Israel’s Sharon region. J Environ Manag 54(1):39–57

    Article  Google Scholar 

  • Shalaby A, Tateishi R (2007) Remote sensing and GIS for mapping and monitoring land cover and land-use changes in the Northwestern coastal zone of Egypt. Appl Geogr 27(1):28–41

    Article  Google Scholar 

  • Song C, Woodcock CE, Seto KC, Lenney MP, Macomber SA (2001) Classification and change detection using Landsat TM data: when and how to correct atmospheric effects? Remote Sens Environ 75(2):230–244

    Article  Google Scholar 

  • Sturrock RN, Frankel SJ, Brown AV, Hennon PE, Kliejunas JT, Lewis KJ, Woods AJ (2011) Climate change and forest diseases. Plant Pathol 60(1):133–149

    Article  Google Scholar 

  • Suribabu CR, Bhaskar J, Neelakantan TR (2012) Land use/cover change detection of Tiruchirapalli City, India, using integrated remote sensing and GIS tools. J Indian Soc Remote Sens 40(4):699–708

    Article  Google Scholar 

  • Suykens JA, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9(3):293–300

    Article  Google Scholar 

  • Tan S, Zhang J (2008) An empirical study of sentiment analysis for chinese documents. Expert Syst Appl 34(4):2622–2629

    Article  Google Scholar 

  • Tzotsos A, Argialas D (2008) Support vector machine classification for object-based image analysis. In: Blaschke T, Lang S, Hay GJ (eds) Object-based image analysis. Springer, Berlin, Heidelberg, pp 663–677

    Chapter  Google Scholar 

  • Unnikrishnan CK, Gharai B, Mohandas S, Mamgain A, Rajagopal EN, Iyengar GR, Rao PVN (2016) Recent changes on land use/land cover over Indian region and its impact on the weather prediction using unified model. Atmos Sci Lett 17(4):294–300

    Article  Google Scholar 

  • Wang J, Gao Y, Wang S (2015) Land use/cover change impacts on water table change over 25 years in a desert-oasis transition zone of the Heihe River Basin, China. Water 8(1):11

    Article  Google Scholar 

  • Zoran M, Anderson E (2006) The use of multi-temporal and multispectral satellite data for change detection analysis of the Romanian Black Sea coastal zone. J Optoelectron Adv Mater 8(1):252

    Google Scholar 

Download references

Acknowledgements

The authors would also like to acknowledge National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis (CFSR), West Bengal Groundwater Commission and GLOVIS, for providing climate, groundwater and satellite data for the analysis. The authors would like to thank Indian Institute of Technology Kharagpur and Vidyasagar University for their constant support and providing the wonderful platform for research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narayan Kayet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kayet, N., Chakrabarty, A., Pathak, K. et al. Spatiotemporal LULC change impacts on groundwater table in Jhargram, West Bengal, India. Sustain. Water Resour. Manag. 5, 1189–1200 (2019). https://doi.org/10.1007/s40899-018-0294-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40899-018-0294-9

Keywords

Navigation