Skip to main content
Log in

Geosciences in the assessment of thermal and mineral groundwater systems in N-Portugal: a review

  • Original Article
  • Published:
Sustainable Water Resources Management Aims and scope Submit manuscript

Abstract

In the North of Portugal, thermal and mineral groundwater resources (e.g., Chaves CO2-rich thermal—76 °C—waters) are being used in the local Spas, and are considered one of the main sources of local/regional development/income. A multidisciplinary approach, including geological, tectonic, geochemical and isotopic (2H, 18O, 13C, 87Sr, 3H, 14C and 3He/4He) methodologies, was used to assess local/regional conceptual circulation models. In the case of the Chaves CO2-rich thermal waters, this approach provided important data to answer the most commonly asked questions so as to enable the elaboration of a robust hydrogeological conceptual model, namely (1) Chaves thermal waters belong to the HCO3/Na/CO2-rich type (with pH ≈7), in that the result of meteoric waters–granitic rocks–gas (CO2) interaction; (2) Padrela Mountain (NE-Chaves), ascribed to high-fractured rocks, is the main recharge area; the stable isotopic composition of the groundwater samples indicate a mean recharge altitude higher than 1150 m a.s.l.; (3) the mean Sr isotopic ratio of the thermomineral waters (87Sr/86Srmean = 0.722419) is similar to that of the Sr isotopic ratios of the plagioclases of the granitic rocks (e.g. 87Sr/86Sr = 0.72087; 87Sr/86Sr = 0.71261), indicating that hydrolysis of plagioclase is the main water–rock interaction process, favoured by the presence of deep-seated (mantle-derived) CO213C values in the range of −6 to −1‰ vs. PDB, and the CO2/3He values from 5.1 × 108 to 7.5 × 109, are typical of MORB fluids); (4) the income of carbon-14 free to Chaves CO2-rich thermal waters system does not permit reliable 14C groundwater dating; (5) the geothermometric results (e.g. K2/Mg and silica geothermometers) indicate equilibrium temperatures around 120 °C, and a maximum depth of about 3.5 km reached by the Chaves CO2-rich thermal waters system was estimated. The discharge zones are mainly related to the intersection of the main local/regional fault lineaments (and conjugate structures), responsible for promoting the mineral and thermal groundwater ascent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted and revised from Oliveira et al. (1992) and Pereira et al. (2000)

Fig. 2
Fig. 3

Modified from Andrade (2003)

Fig. 4
Fig. 5
Fig. 6

Modified from Marques et al. (2001)

Fig. 7

Adapted from Marques et al. (2010b)

Similar content being viewed by others

References

  • Aires-Barros L, Graça RC, Marques JM (1994) The low temperature geothermal system of Chaves (Northern Portugal): a geochemical approach. Document du Bureau de Recherches Géologiques et Minières 230:67–73

    Google Scholar 

  • Aires-Barros L, Marques JM, Graça RC (1995) Elemental and isotopic geochemistry in the hydrothermal area of Chaves/Vila Pouca de Aguiar (Northern Portugal). Environ Geol 25(4):232–238

    Google Scholar 

  • Aires-Barros L, Marques JM, Graça RC, Matias MJ, van Der Weijden CH, Kreulen R, Eggenkamp HGM (1998) Hot and cold CO2-rich mineral waters in Chaves geothermal area (Northern Portugal). Geothermics 27(1):89–107

    Google Scholar 

  • Albu M, Banks D, Nash H (1997) Mineral and thermal groundwater resources. Chapman and Hall, London

    Google Scholar 

  • Almeida FM (1982) New geothermometric data on Chaves and S. Pedro do Sul waters. Comunicações dos Serviços Geológicos de Portugal 68(2):179–190 (in Portuguese)

    Google Scholar 

  • Andrade MPL (2003) Isotopic geochemistry and thermomineral waters. Contribution of Sr (87Sr/86Sr) and Cl (37Cl/35Cl) isotopes to the elaboration of circulation models. The case of some CO2-rich waters from N Portugal. Dissertation—MSc Thesis, Technical University of Lisbon—IST (in Portuguese with English abstract)

  • Arthaud F, Matte Ph (1975) The Southwestern European Late Varsiscan strike-slip shear faults. Geometric pattern and deformation conditions study. Tectonophysics 25:139–171 (in French with English abstract)

    Google Scholar 

  • Baest LJAM van (2004) College conceptuele modellen. Universiteit van Tilburg. http://spitswww.uvt.nl/web/Fsw/Mto/opfris/wg1.doc. Accessed 2004 (in Dutch)

  • Baptista J, Coke C, Dias R, Ribeiro A (1993) Tectonics and geomorphology of Pedras Salgadas region and associated mineral springs. In: Chambel A (ed) Comunicações da XII Reunião de Geologia do Oeste Peninsular, vol 1. Évora University, Évora, Portugal, pp 125–139 (in Portuguese)

  • Cabral J (1989) An example of intraplate neotectonic activity Vilariça Basin, Northeast Portugal. Tectonics 8:285–303

    Google Scholar 

  • Capasso G, Inguaggiato S (1998) A simple method for the determination of dissolved gases in natural waters. An application to thermal waters from Vulcano Island. Appl Geochem 13(5):631–642

    Google Scholar 

  • Carreira PM, Marques JM, Carvalho MR, Capasso G, Grassa F, Antunes da Silva M, Matias MJ (2007) Genesis of CO2-rich mineral waters (N-Portugal) inferred by geochemistry and isotopes ratios in water and gas phases. In: Ribeiro L, Chambel A, Condesso de Melo T (eds) Abstract book of the XXXV IAH congress, international association of hydrogeologists, groundwater and ecosystems. DTP Solutions, Cape Town, South Africa, pp 549–550

  • Carreira PM, Marques JM, Graça RC, Aires-Barros L (2008) Radiocarbon application in dating “complex” hot and cold CO2-rich mineral water systems: a review of case studies ascribed to the northern Portugal. Appl Geochem 23:2817–2828

    Google Scholar 

  • Carreira PM, Marques JM, Rosário Carvalho M, Giorgio C, Fausto G (2010) Mantle-derived carbon in Hercynian granites. Stable isotopes signatures and C/He associations in the thermomineral waters, N-Portugal. J Volcanol Geotherm Res 189:49–56

    Google Scholar 

  • Clarke ID, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis Publishers, New York

    Google Scholar 

  • Craig H (1961) Standard for reporting concentrations of deuterium and oxygen-18 in natural waters. Science 133:1833–1834

    Google Scholar 

  • Criaud A, Fouillac C (1986) Étude des eaux thermominérales carbogazeuses du Massif Central Français. II. Comportment de quelques métaux en trace, de l’arsenic, de l’antimoine et du germanium. Geochim Cosmochim Acta 50:1573–1582

    Google Scholar 

  • Duque R, Monteiro Santos FA, Mendes-Victor LA (1998) Heat flow and deep temperatures in the Chaves Geothermal system, northern Portugal. Geothermics 27(1):75–87

    Google Scholar 

  • Edmunds WM, Kay RLF, McCartney RA (1985) Origin of saline groundwaters in the Carnmenellis granite (Cornwall, England): natural Processes and reaction during hot dry rock reservoir circulation. Chem Geol 49:287–301

    Google Scholar 

  • Epstein S, Mayeda T (1953) Variation of 18O content of waters from natural sources. Geochim Cosmochim Acta 4:213–224

    Google Scholar 

  • Faure G (1986) Principles of isotope geology, 2nd edn. Wiley, New York

    Google Scholar 

  • Fouillac C (1983) Chemical geothermometry in CO2-rich thermal waters. Example of the French Massif Central. Geothermics 12(2/3):146–160

    Google Scholar 

  • Fouillac C, Michard G (1981) Sodium/lithium ratio in water applied to geothermometry of geothermal reservoirs. Geothermics 10:55–70

    Google Scholar 

  • Fournier RO (1977) Chemical geothermometers and mixing models for geothermal systems. Geothermics 5:41–50

    Google Scholar 

  • Fournier RO, Potter RW II (1979) Magnesium correction to the Na-K-Ca chemical geothermometer. Geochim Cosmochim Acta 43:1543–1550

    Google Scholar 

  • Fournier RO, Truesdell AH (1973) An empirical Na-K-Ca geothermometer for natural waters. Geochim Cosmochim Acta 37:1255–1275

    Google Scholar 

  • Friedman I (1953) Deuterium content of natural waters and other substances. Geochim Cosmochim Acta 4:89–103

    Google Scholar 

  • Gast PW (1960) Limitations on the composition of the upper mantle. J Geophys Res 65(4):1287–1297

    Google Scholar 

  • Giggenbach WF (1988) Geothermal solute equilibria—derivation of Na-K-Ca-Mg geoindicators. Geochim Cosmochim Acta 52:2749–2765

    Google Scholar 

  • Goff F, Wollenberg HA, Brookins DC, Kristler RW (1991) A Sr-isotopic comparison between thermal waters, rocks, and hydrothermal calcites, Long Valley caldera, California. J Volcanol Geotherm Res 48:265–281

    Google Scholar 

  • Greber E (1994) Deep circulation of CO2-rich palaeowaters in a seismically active zone (Kuzuluk/Adaparazi, northwestern Turkey). Geothermics 23(2):151–174

    Google Scholar 

  • Hedge CE, Walthall FG (1963) Radiogenic strontium-87 as an index of geologic processes. Science 140:1214

    Google Scholar 

  • Hurley PM, Hughes H, Faure G, Fairbain HW, Pinson WH (1962) Radiogenic strontium-87 model of continent formation. J Geophys Res 67:5315–5334

    Google Scholar 

  • IAEA (1976) Procedure and technique critique for tritium enrichment by electrolysis at IAEA laboratory. Technical Procedure No. 19. International Atomic Energy Agency, Vienna

  • IAEA (1981) Stable isotope hydrology. deuterium and oxygen-18 in the water cycle. IAEA, Vienna. Technical Reports Series 210. International Atomic Energy Agency, Vienna

  • Inguaggiato S, Rizzo A (2004) Dissolved helium isotope ratios in ground-waters: a new technique based on gas-water re-equilibration and its application to Stromboli volcanic system. Appl Geochem 19:665–673

    Google Scholar 

  • Inguaggiato S, Martin-Del Pozzo AL, Aguayo A, Capasso G, Favara R (2005) Isotopic, chemical and dissolved gas constraints on spring water from Popocatepetl volcano (Mexico): evidence of gas–water interaction between magmatic component and shallow fluids. J Volcanol Geotherm Res 4:91–108

    Google Scholar 

  • Marques JM, Aires-Barros L, Graça RC, Matias MJ, Basto MJ (1998a) Fluid chemistry and water–rock interaction in a CO2-rich geothermal area, Northern Portugal. In: Arehart GB, Hulstron JR (eds) Proceedings of the 9th international symposium on water–rock interaction—WRI-9/Taupo, New Zealand. A.A. Balkema, Rotterdam, pp 637–640

  • Marques JM, Carreira PM, Aires-Barros L, Graça RC (1998b) About the origin of CO2 in some HCO3/Na/CO2-rich Portuguese mineral waters. Geotherm Resour Counc Trans 22:113–117

    Google Scholar 

  • Marques JM, Aires-Barros L, Graça RC (1999) Geochemical and isotopic features of hot and cold CO2-rich mineral waters of northern Portugal: a review and reinterpretation. Bull d’Hydrogéol 17:175–183

    Google Scholar 

  • Marques JM, Aires-Barros L, Graça RC, Matias MJ, Basto MJ (2000a) Water/rock interaction in a CO2-rich geothermal area (Northern Portugal): an 18O/16O and 2H/1H isotope study. Geotherm Resour Counc Trans 24:253–258

    Google Scholar 

  • Marques JM, Carreira PM, Aires-Barros L, Graça RC (2000b) Nature and role of CO2 in some hot and cold HCO3/Na/CO2-rich Portuguese mineral waters: a review and reinterpretation. Environ Geol 40(1–2):53–63

    Google Scholar 

  • Marques JM, Andrade M, Aires-Barros L, Graça RC, Eggenkamp HGM, Antunes da Silva M (2001) 87Sr/86Sr and 37Cl/35Cl signatures of CO2-rich mineral waters (N-Portugal): preliminary results. In: Seiler K-P, Wohnlich S (eds) New approaches characterizing groundwater flow. A.A Balkema, Rotterdam, pp 1025–1029

    Google Scholar 

  • Marques JM, Andrade M, Carreira PM, Graça RC, Aires-Barros L (2003) Evolution of CO2-rich mineral waters from Hercynian granitic rocks (N-Portugal): questions and answers. In: Krásny J, Hrkal Z, Bruthans J (eds) Proceedings of the international conference on groundwater in fractured rocks, Prague, pp 217–218

  • Marques JM, Andrade M, Carreira PM, Eggenkamp HGM, Graça RC, Aires-Barros L, Antunes da Silva M (2006) Chemical and isotopic signatures of HCO3/Na/CO2-rich geofluids, North Portugal. Geofluids 6:273–287

    Google Scholar 

  • Marques JM, Matias MJ, Basto MJ, Carreira PM, Aires-Barros L, Goff FE (2010a) Hydrothermal alteration of Hercynian granites, its significance to the evolution of geothermal systems in granitic rocks. Geothermics 39:152–160

    Google Scholar 

  • Marques JM, Carreira PM, Espinha Marques J, Chaminé HI, Fonseca PE, Monteiro Santos FA, Eggenkamp HGM, Teixeira J (2010b) The role of geosciences in the assessment of low-temperature geothermal resources (N-Portugal): a review. Geosci J 14(4):329–446

    Google Scholar 

  • Marques JM, Carreira PM, Goff F, Eggenkamp HGM, Antunes da Silva M (2012) Input of 87Sr/86Sr ratios and Sr geochemical signatures to update knowledge on thermal and mineral waters flow paths in fractured rocks (N-Portugal). Appl Geochem 27:1471–1481

    Google Scholar 

  • McNutt RH, Frape SK, Jones MG, MacDonald IA (1990) The 87Sr/86Sr values of Canadian Shield brines and fracture minerals with applications to groundwater mixing, fracture history, and geochronology. Geochim Cosmochim Acta 54:205–215

    Google Scholar 

  • Millot R, Négrel Ph, Petelet-Giraud E (2007) Multi-isotopic (Li, B, Sr, Nd) approach for geothermal reservoir characterization in the Limagne Basin (Massif Central, France). Appl Geochem 22(11):2307–2325

    Google Scholar 

  • Millot R, Guerrot C, Innocent C, Négrel Ph, Sanjuan B (2011) Chemical, multi-isotopic (Li–B–Sr–U–H–O) and thermal characterization of Triassic formation waters from the Paris Basin. Chem Geol 283(3, 4):226–241

    Google Scholar 

  • Monteiro Santos FA, Dupis A, Andrade Afonso AR, Mendes-Victor LA (1995) Magnetotelluric observations over the Chaves geothermal field (NE Portugal)—preliminary results. Phys Earth Planet Inter 91:203–211

    Google Scholar 

  • Monteiro Santos FA, Dupis A, Andrade Afonso AR, Mendes-Victor LA (1996) An audiomagnetotelluric survey over the Chaves geothermal field (NE Portugal). Geothermics 25(3):389–406

    Google Scholar 

  • Monteiro Santos FA, Andrade Afonso AR, Mendes-Victor LA (1997) A study of Chaves geothermal field using 3D resistivity modelling. J Appl Geophys 37:85–102

    Google Scholar 

  • Moore JE (2002) Field hydrogeology: a guide for site investigations and report preparation. Lewis Publishers, A CRC Press Company, New York

    Google Scholar 

  • Négrel Ph (1999) Geochemical study in a granitic area, the Margeride, France: chemical element behaviour and 87Sr/86Sr constraints. Aquat Geochem 5:125–165

    Google Scholar 

  • Négrel P, Fouillac C, Brach M (1997) A strontium isotopic study of mineral and surface waters from the Cézallier (Massif Central, France): implications for mixing processes in areas of disseminated emergences of mineral waters. Chem Geol 135:89–101

    Google Scholar 

  • Négrel Ph, Casanova J, Aranyossy JF (2001) Strontium isotope systematics used to decipher the origin of groundwaters sampled from granitoids: the Vienne case (France). Chem Geol 177:287–308

    Google Scholar 

  • Oliveira JT, Pereira E, Ramalho M, Antunes MT, Monteiro JH (1992) Geological map of Portugal (1: 500,000), 5th edn, Portuguese Geological Survey, Lisbon (in Portuguese)

  • Pereira E (Coord.), Ribeiro A, Marques F, Munhá J, Castro P, Meireles C, Ribeiro MA, Pereira D, Noronha F, Ferreira N (2000) Geological Map of Portugal (1:/200,000), sheet 2, 1st edn, Portuguese Geological Survey, Lisbon (in Portuguese)

  • Pérez NM, Nakai S, Wakita H, Albert-Bertrán JF, Redondo R (1996) Preliminary results on 3He/4He isotopic ratios in terrestrial fluids from Iberian Peninsula: seismotectonic and neotectonic implications. Geogaceta 20(4):830–833

    Google Scholar 

  • Portugal Ferreira M, Sousa Oliveira A, Trota AN (1992) Chaves geothermal pole. geological survey, I and II. Joule I Program, DGXII, CEE. UTAD (University of Trás-os-Montes and Alto Douro, Portugal). Internal Report, p 44

  • Ribeiro A, Kullberg MC, Kullberg JC, Manuppella G, Phipps S (1990) A review of Alpine Tectonics in Portugal: foreland detachment in basement and cover rocks. Tectonophysics 184:357–366

    Google Scholar 

  • Ribeiro A, Munhá J, Dias R, Mateus A, Pereira E, Ribeiro L, Fonseca PE, Araújo A, Oliveira JT, Romão J, Chaminé HI, Coke C, Pedro J (2007) Geodynamic evolution of the SW Europe Variscides. Tectonics 26, TC6009. doi:10.1029/2006TC002058

    Google Scholar 

  • Sharp JM Jr (1993) Fractured aquifers/reservoirs: approaches, problems and opportunities. Mem. 24th Congress of IAH, Oslo, Part 1, pp 23–38

  • Singhal BBS, Gupta RP (1999) Applied hydrogeology of fractured rocks. Springer, New York

    Google Scholar 

  • Sousa Oliveira A (2001) Hydrogeology of the carbon dioxide hydromineral province systems of transmontana: Riverside (Mirandela), Sandim (Vinhais), Segirei and Salgadela (Chaves). Dissertation, Unpublished PhD Thesis, Department of Geology, Trás-os-Montes and Alto Douro Univ (in Portuguese)

  • Sousa Oliveira A, Portugal Ferreira MP (1995) Structural control of the hydromineral springs from Pedras Salgadas region (Vila Pouca de Aguiar—Northern Portugal). Porto University, Faculty of Sciences, Museum and Mineralogical and Geological Laboratory. Memória 4:485–489 (in Portuguese)

    Google Scholar 

  • Stettler A (1977) 87Rb-87Sr systematics of a geothermal water-rock association in the Massif Central, France. Earth Planet Sci Lett 34:432–438

    Google Scholar 

  • Stettler A, Allègre CJ (1978) 87Rb-87Sr studies of waters in a geothermal area, the Cantal, France. Earth Planet Sci Lett 38:364–372

    Google Scholar 

  • Stumm W, Morgan JJ (1981) Aquatic chemistry—an introduction emphasizing chemical equilibria in natural waters, 2nd edn. Wiley-Interscience, New York

    Google Scholar 

  • Truesdell AH (1975) Geochemical techniques in exploration. In: Proceedings of the 2nd United Nations symposium on the development and use of geothermal resources, San Francisco, vol 1, pp 53–79

  • Truesdell AH, Hulston JR (1980) Isotopic evidence on environments of geothermal systems. In: Fritz P, Fontes J Ch. (eds) Handbook of environmental isotope geochemistry. The terrestrial environment, vol 1. Elsevier, Amsterdam, The Netherlands, pp 179–226

    Google Scholar 

Download references

Acknowledgements

CERENA/IST acknowledges the FCT support through the UID/ECI/04028/2013 Project and C2TN/IST author gratefully acknowledges the FCT support through the UID/Multi/04349/2013 Project. The authors would like to thank two anonymous reviewers for their comments and suggestions to improve a previous draft of this manuscript. L. Harding is thanked for editing the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Marques.

Additional information

This article is part of the special issue on Mineral and Thermal Waters.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marques, J.M., Carreira, P.M. Geosciences in the assessment of thermal and mineral groundwater systems in N-Portugal: a review. Sustain. Water Resour. Manag. 5, 1511–1523 (2019). https://doi.org/10.1007/s40899-017-0190-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40899-017-0190-8

Keywords

Navigation