Geosciences in the assessment of thermal and mineral groundwater systems in N-Portugal: a review

Original Article
  • 4 Downloads

Abstract

In the North of Portugal, thermal and mineral groundwater resources (e.g., Chaves CO2-rich thermal—76 °C—waters) are being used in the local Spas, and are considered one of the main sources of local/regional development/income. A multidisciplinary approach, including geological, tectonic, geochemical and isotopic (2H, 18O, 13C, 87Sr, 3H, 14C and 3He/4He) methodologies, was used to assess local/regional conceptual circulation models. In the case of the Chaves CO2-rich thermal waters, this approach provided important data to answer the most commonly asked questions so as to enable the elaboration of a robust hydrogeological conceptual model, namely (1) Chaves thermal waters belong to the HCO3/Na/CO2-rich type (with pH ≈7), in that the result of meteoric waters–granitic rocks–gas (CO2) interaction; (2) Padrela Mountain (NE-Chaves), ascribed to high-fractured rocks, is the main recharge area; the stable isotopic composition of the groundwater samples indicate a mean recharge altitude higher than 1150 m a.s.l.; (3) the mean Sr isotopic ratio of the thermomineral waters (87Sr/86Srmean = 0.722419) is similar to that of the Sr isotopic ratios of the plagioclases of the granitic rocks (e.g. 87Sr/86Sr = 0.72087; 87Sr/86Sr = 0.71261), indicating that hydrolysis of plagioclase is the main water–rock interaction process, favoured by the presence of deep-seated (mantle-derived) CO213C values in the range of −6 to −1‰ vs. PDB, and the CO2/3He values from 5.1 × 108 to 7.5 × 109, are typical of MORB fluids); (4) the income of carbon-14 free to Chaves CO2-rich thermal waters system does not permit reliable 14C groundwater dating; (5) the geothermometric results (e.g. K2/Mg and silica geothermometers) indicate equilibrium temperatures around 120 °C, and a maximum depth of about 3.5 km reached by the Chaves CO2-rich thermal waters system was estimated. The discharge zones are mainly related to the intersection of the main local/regional fault lineaments (and conjugate structures), responsible for promoting the mineral and thermal groundwater ascent.

Keywords

Thermal and mineral waters Geology Geochemistry Isotopes Conceptual model N-Portugal 

Notes

Acknowledgements

CERENA/IST acknowledges the FCT support through the UID/ECI/04028/2013 Project and C2TN/IST author gratefully acknowledges the FCT support through the UID/Multi/04349/2013 Project. The authors would like to thank two anonymous reviewers for their comments and suggestions to improve a previous draft of this manuscript. L. Harding is thanked for editing the English.

References

  1. Aires-Barros L, Graça RC, Marques JM (1994) The low temperature geothermal system of Chaves (Northern Portugal): a geochemical approach. Document du Bureau de Recherches Géologiques et Minières 230:67–73Google Scholar
  2. Aires-Barros L, Marques JM, Graça RC (1995) Elemental and isotopic geochemistry in the hydrothermal area of Chaves/Vila Pouca de Aguiar (Northern Portugal). Environ Geol 25(4):232–238CrossRefGoogle Scholar
  3. Aires-Barros L, Marques JM, Graça RC, Matias MJ, van Der Weijden CH, Kreulen R, Eggenkamp HGM (1998) Hot and cold CO2-rich mineral waters in Chaves geothermal area (Northern Portugal). Geothermics 27(1):89–107CrossRefGoogle Scholar
  4. Albu M, Banks D, Nash H (1997) Mineral and thermal groundwater resources. Chapman and Hall, LondonCrossRefGoogle Scholar
  5. Almeida FM (1982) New geothermometric data on Chaves and S. Pedro do Sul waters. Comunicações dos Serviços Geológicos de Portugal 68(2):179–190 (in Portuguese) Google Scholar
  6. Andrade MPL (2003) Isotopic geochemistry and thermomineral waters. Contribution of Sr (87Sr/86Sr) and Cl (37Cl/35Cl) isotopes to the elaboration of circulation models. The case of some CO2-rich waters from N Portugal. Dissertation—MSc Thesis, Technical University of Lisbon—IST (in Portuguese with English abstract) Google Scholar
  7. Arthaud F, Matte Ph (1975) The Southwestern European Late Varsiscan strike-slip shear faults. Geometric pattern and deformation conditions study. Tectonophysics 25:139–171 (in French with English abstract) CrossRefGoogle Scholar
  8. Baest LJAM van (2004) College conceptuele modellen. Universiteit van Tilburg. http://spitswww.uvt.nl/web/Fsw/Mto/opfris/wg1.doc. Accessed 2004 (in Dutch)
  9. Baptista J, Coke C, Dias R, Ribeiro A (1993) Tectonics and geomorphology of Pedras Salgadas region and associated mineral springs. In: Chambel A (ed) Comunicações da XII Reunião de Geologia do Oeste Peninsular, vol 1. Évora University, Évora, Portugal, pp 125–139 (in Portuguese) Google Scholar
  10. Cabral J (1989) An example of intraplate neotectonic activity Vilariça Basin, Northeast Portugal. Tectonics 8:285–303CrossRefGoogle Scholar
  11. Capasso G, Inguaggiato S (1998) A simple method for the determination of dissolved gases in natural waters. An application to thermal waters from Vulcano Island. Appl Geochem 13(5):631–642CrossRefGoogle Scholar
  12. Carreira PM, Marques JM, Carvalho MR, Capasso G, Grassa F, Antunes da Silva M, Matias MJ (2007) Genesis of CO2-rich mineral waters (N-Portugal) inferred by geochemistry and isotopes ratios in water and gas phases. In: Ribeiro L, Chambel A, Condesso de Melo T (eds) Abstract book of the XXXV IAH congress, international association of hydrogeologists, groundwater and ecosystems. DTP Solutions, Cape Town, South Africa, pp 549–550Google Scholar
  13. Carreira PM, Marques JM, Graça RC, Aires-Barros L (2008) Radiocarbon application in dating “complex” hot and cold CO2-rich mineral water systems: a review of case studies ascribed to the northern Portugal. Appl Geochem 23:2817–2828CrossRefGoogle Scholar
  14. Carreira PM, Marques JM, Rosário Carvalho M, Giorgio C, Fausto G (2010) Mantle-derived carbon in Hercynian granites. Stable isotopes signatures and C/He associations in the thermomineral waters, N-Portugal. J Volcanol Geotherm Res 189:49–56CrossRefGoogle Scholar
  15. Clarke ID, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis Publishers, New YorkGoogle Scholar
  16. Craig H (1961) Standard for reporting concentrations of deuterium and oxygen-18 in natural waters. Science 133:1833–1834CrossRefGoogle Scholar
  17. Criaud A, Fouillac C (1986) Étude des eaux thermominérales carbogazeuses du Massif Central Français. II. Comportment de quelques métaux en trace, de l’arsenic, de l’antimoine et du germanium. Geochim Cosmochim Acta 50:1573–1582CrossRefGoogle Scholar
  18. Duque R, Monteiro Santos FA, Mendes-Victor LA (1998) Heat flow and deep temperatures in the Chaves Geothermal system, northern Portugal. Geothermics 27(1):75–87CrossRefGoogle Scholar
  19. Edmunds WM, Kay RLF, McCartney RA (1985) Origin of saline groundwaters in the Carnmenellis granite (Cornwall, England): natural Processes and reaction during hot dry rock reservoir circulation. Chem Geol 49:287–301CrossRefGoogle Scholar
  20. Epstein S, Mayeda T (1953) Variation of 18O content of waters from natural sources. Geochim Cosmochim Acta 4:213–224CrossRefGoogle Scholar
  21. Faure G (1986) Principles of isotope geology, 2nd edn. Wiley, New YorkGoogle Scholar
  22. Fouillac C (1983) Chemical geothermometry in CO2-rich thermal waters. Example of the French Massif Central. Geothermics 12(2/3):146–160Google Scholar
  23. Fouillac C, Michard G (1981) Sodium/lithium ratio in water applied to geothermometry of geothermal reservoirs. Geothermics 10:55–70CrossRefGoogle Scholar
  24. Fournier RO (1977) Chemical geothermometers and mixing models for geothermal systems. Geothermics 5:41–50CrossRefGoogle Scholar
  25. Fournier RO, Potter RW II (1979) Magnesium correction to the Na-K-Ca chemical geothermometer. Geochim Cosmochim Acta 43:1543–1550CrossRefGoogle Scholar
  26. Fournier RO, Truesdell AH (1973) An empirical Na-K-Ca geothermometer for natural waters. Geochim Cosmochim Acta 37:1255–1275CrossRefGoogle Scholar
  27. Friedman I (1953) Deuterium content of natural waters and other substances. Geochim Cosmochim Acta 4:89–103CrossRefGoogle Scholar
  28. Gast PW (1960) Limitations on the composition of the upper mantle. J Geophys Res 65(4):1287–1297CrossRefGoogle Scholar
  29. Giggenbach WF (1988) Geothermal solute equilibria—derivation of Na-K-Ca-Mg geoindicators. Geochim Cosmochim Acta 52:2749–2765CrossRefGoogle Scholar
  30. Goff F, Wollenberg HA, Brookins DC, Kristler RW (1991) A Sr-isotopic comparison between thermal waters, rocks, and hydrothermal calcites, Long Valley caldera, California. J Volcanol Geotherm Res 48:265–281CrossRefGoogle Scholar
  31. Greber E (1994) Deep circulation of CO2-rich palaeowaters in a seismically active zone (Kuzuluk/Adaparazi, northwestern Turkey). Geothermics 23(2):151–174CrossRefGoogle Scholar
  32. Hedge CE, Walthall FG (1963) Radiogenic strontium-87 as an index of geologic processes. Science 140:1214CrossRefGoogle Scholar
  33. Hurley PM, Hughes H, Faure G, Fairbain HW, Pinson WH (1962) Radiogenic strontium-87 model of continent formation. J Geophys Res 67:5315–5334CrossRefGoogle Scholar
  34. IAEA (1976) Procedure and technique critique for tritium enrichment by electrolysis at IAEA laboratory. Technical Procedure No. 19. International Atomic Energy Agency, ViennaGoogle Scholar
  35. IAEA (1981) Stable isotope hydrology. deuterium and oxygen-18 in the water cycle. IAEA, Vienna. Technical Reports Series 210. International Atomic Energy Agency, ViennaGoogle Scholar
  36. Inguaggiato S, Rizzo A (2004) Dissolved helium isotope ratios in ground-waters: a new technique based on gas-water re-equilibration and its application to Stromboli volcanic system. Appl Geochem 19:665–673CrossRefGoogle Scholar
  37. Inguaggiato S, Martin-Del Pozzo AL, Aguayo A, Capasso G, Favara R (2005) Isotopic, chemical and dissolved gas constraints on spring water from Popocatepetl volcano (Mexico): evidence of gas–water interaction between magmatic component and shallow fluids. J Volcanol Geotherm Res 4:91–108CrossRefGoogle Scholar
  38. Marques JM, Aires-Barros L, Graça RC, Matias MJ, Basto MJ (1998a) Fluid chemistry and water–rock interaction in a CO2-rich geothermal area, Northern Portugal. In: Arehart GB, Hulstron JR (eds) Proceedings of the 9th international symposium on water–rock interaction—WRI-9/Taupo, New Zealand. A.A. Balkema, Rotterdam, pp 637–640Google Scholar
  39. Marques JM, Carreira PM, Aires-Barros L, Graça RC (1998b) About the origin of CO2 in some HCO3/Na/CO2-rich Portuguese mineral waters. Geotherm Resour Counc Trans 22:113–117Google Scholar
  40. Marques JM, Aires-Barros L, Graça RC (1999) Geochemical and isotopic features of hot and cold CO2-rich mineral waters of northern Portugal: a review and reinterpretation. Bull d’Hydrogéol 17:175–183Google Scholar
  41. Marques JM, Aires-Barros L, Graça RC, Matias MJ, Basto MJ (2000a) Water/rock interaction in a CO2-rich geothermal area (Northern Portugal): an 18O/16O and 2H/1H isotope study. Geotherm Resour Counc Trans 24:253–258Google Scholar
  42. Marques JM, Carreira PM, Aires-Barros L, Graça RC (2000b) Nature and role of CO2 in some hot and cold HCO3/Na/CO2-rich Portuguese mineral waters: a review and reinterpretation. Environ Geol 40(1–2):53–63CrossRefGoogle Scholar
  43. Marques JM, Andrade M, Aires-Barros L, Graça RC, Eggenkamp HGM, Antunes da Silva M (2001) 87Sr/86Sr and 37Cl/35Cl signatures of CO2-rich mineral waters (N-Portugal): preliminary results. In: Seiler K-P, Wohnlich S (eds) New approaches characterizing groundwater flow. A.A Balkema, Rotterdam, pp 1025–1029Google Scholar
  44. Marques JM, Andrade M, Carreira PM, Graça RC, Aires-Barros L (2003) Evolution of CO2-rich mineral waters from Hercynian granitic rocks (N-Portugal): questions and answers. In: Krásny J, Hrkal Z, Bruthans J (eds) Proceedings of the international conference on groundwater in fractured rocks, Prague, pp 217–218Google Scholar
  45. Marques JM, Andrade M, Carreira PM, Eggenkamp HGM, Graça RC, Aires-Barros L, Antunes da Silva M (2006) Chemical and isotopic signatures of HCO3/Na/CO2-rich geofluids, North Portugal. Geofluids 6:273–287CrossRefGoogle Scholar
  46. Marques JM, Matias MJ, Basto MJ, Carreira PM, Aires-Barros L, Goff FE (2010a) Hydrothermal alteration of Hercynian granites, its significance to the evolution of geothermal systems in granitic rocks. Geothermics 39:152–160CrossRefGoogle Scholar
  47. Marques JM, Carreira PM, Espinha Marques J, Chaminé HI, Fonseca PE, Monteiro Santos FA, Eggenkamp HGM, Teixeira J (2010b) The role of geosciences in the assessment of low-temperature geothermal resources (N-Portugal): a review. Geosci J 14(4):329–446CrossRefGoogle Scholar
  48. Marques JM, Carreira PM, Goff F, Eggenkamp HGM, Antunes da Silva M (2012) Input of 87Sr/86Sr ratios and Sr geochemical signatures to update knowledge on thermal and mineral waters flow paths in fractured rocks (N-Portugal). Appl Geochem 27:1471–1481CrossRefGoogle Scholar
  49. McNutt RH, Frape SK, Jones MG, MacDonald IA (1990) The 87Sr/86Sr values of Canadian Shield brines and fracture minerals with applications to groundwater mixing, fracture history, and geochronology. Geochim Cosmochim Acta 54:205–215CrossRefGoogle Scholar
  50. Millot R, Négrel Ph, Petelet-Giraud E (2007) Multi-isotopic (Li, B, Sr, Nd) approach for geothermal reservoir characterization in the Limagne Basin (Massif Central, France). Appl Geochem 22(11):2307–2325CrossRefGoogle Scholar
  51. Millot R, Guerrot C, Innocent C, Négrel Ph, Sanjuan B (2011) Chemical, multi-isotopic (Li–B–Sr–U–H–O) and thermal characterization of Triassic formation waters from the Paris Basin. Chem Geol 283(3, 4):226–241CrossRefGoogle Scholar
  52. Monteiro Santos FA, Dupis A, Andrade Afonso AR, Mendes-Victor LA (1995) Magnetotelluric observations over the Chaves geothermal field (NE Portugal)—preliminary results. Phys Earth Planet Inter 91:203–211CrossRefGoogle Scholar
  53. Monteiro Santos FA, Dupis A, Andrade Afonso AR, Mendes-Victor LA (1996) An audiomagnetotelluric survey over the Chaves geothermal field (NE Portugal). Geothermics 25(3):389–406CrossRefGoogle Scholar
  54. Monteiro Santos FA, Andrade Afonso AR, Mendes-Victor LA (1997) A study of Chaves geothermal field using 3D resistivity modelling. J Appl Geophys 37:85–102CrossRefGoogle Scholar
  55. Moore JE (2002) Field hydrogeology: a guide for site investigations and report preparation. Lewis Publishers, A CRC Press Company, New YorkCrossRefGoogle Scholar
  56. Négrel Ph (1999) Geochemical study in a granitic area, the Margeride, France: chemical element behaviour and 87Sr/86Sr constraints. Aquat Geochem 5:125–165CrossRefGoogle Scholar
  57. Négrel P, Fouillac C, Brach M (1997) A strontium isotopic study of mineral and surface waters from the Cézallier (Massif Central, France): implications for mixing processes in areas of disseminated emergences of mineral waters. Chem Geol 135:89–101CrossRefGoogle Scholar
  58. Négrel Ph, Casanova J, Aranyossy JF (2001) Strontium isotope systematics used to decipher the origin of groundwaters sampled from granitoids: the Vienne case (France). Chem Geol 177:287–308CrossRefGoogle Scholar
  59. Oliveira JT, Pereira E, Ramalho M, Antunes MT, Monteiro JH (1992) Geological map of Portugal (1: 500,000), 5th edn, Portuguese Geological Survey, Lisbon (in Portuguese) Google Scholar
  60. Pereira E (Coord.), Ribeiro A, Marques F, Munhá J, Castro P, Meireles C, Ribeiro MA, Pereira D, Noronha F, Ferreira N (2000) Geological Map of Portugal (1:/200,000), sheet 2, 1st edn, Portuguese Geological Survey, Lisbon (in Portuguese) Google Scholar
  61. Pérez NM, Nakai S, Wakita H, Albert-Bertrán JF, Redondo R (1996) Preliminary results on 3He/4He isotopic ratios in terrestrial fluids from Iberian Peninsula: seismotectonic and neotectonic implications. Geogaceta 20(4):830–833Google Scholar
  62. Portugal Ferreira M, Sousa Oliveira A, Trota AN (1992) Chaves geothermal pole. geological survey, I and II. Joule I Program, DGXII, CEE. UTAD (University of Trás-os-Montes and Alto Douro, Portugal). Internal Report, p 44Google Scholar
  63. Ribeiro A, Kullberg MC, Kullberg JC, Manuppella G, Phipps S (1990) A review of Alpine Tectonics in Portugal: foreland detachment in basement and cover rocks. Tectonophysics 184:357–366CrossRefGoogle Scholar
  64. Ribeiro A, Munhá J, Dias R, Mateus A, Pereira E, Ribeiro L, Fonseca PE, Araújo A, Oliveira JT, Romão J, Chaminé HI, Coke C, Pedro J (2007) Geodynamic evolution of the SW Europe Variscides. Tectonics 26, TC6009. doi: 10.1029/2006TC002058
  65. Sharp JM Jr (1993) Fractured aquifers/reservoirs: approaches, problems and opportunities. Mem. 24th Congress of IAH, Oslo, Part 1, pp 23–38Google Scholar
  66. Singhal BBS, Gupta RP (1999) Applied hydrogeology of fractured rocks. Springer, New YorkCrossRefGoogle Scholar
  67. Sousa Oliveira A (2001) Hydrogeology of the carbon dioxide hydromineral province systems of transmontana: Riverside (Mirandela), Sandim (Vinhais), Segirei and Salgadela (Chaves). Dissertation, Unpublished PhD Thesis, Department of Geology, Trás-os-Montes and Alto Douro Univ (in Portuguese) Google Scholar
  68. Sousa Oliveira A, Portugal Ferreira MP (1995) Structural control of the hydromineral springs from Pedras Salgadas region (Vila Pouca de Aguiar—Northern Portugal). Porto University, Faculty of Sciences, Museum and Mineralogical and Geological Laboratory. Memória 4:485–489 (in Portuguese) Google Scholar
  69. Stettler A (1977) 87Rb-87Sr systematics of a geothermal water-rock association in the Massif Central, France. Earth Planet Sci Lett 34:432–438CrossRefGoogle Scholar
  70. Stettler A, Allègre CJ (1978) 87Rb-87Sr studies of waters in a geothermal area, the Cantal, France. Earth Planet Sci Lett 38:364–372CrossRefGoogle Scholar
  71. Stumm W, Morgan JJ (1981) Aquatic chemistry—an introduction emphasizing chemical equilibria in natural waters, 2nd edn. Wiley-Interscience, New YorkGoogle Scholar
  72. Truesdell AH (1975) Geochemical techniques in exploration. In: Proceedings of the 2nd United Nations symposium on the development and use of geothermal resources, San Francisco, vol 1, pp 53–79Google Scholar
  73. Truesdell AH, Hulston JR (1980) Isotopic evidence on environments of geothermal systems. In: Fritz P, Fontes J Ch. (eds) Handbook of environmental isotope geochemistry. The terrestrial environment, vol 1. Elsevier, Amsterdam, The Netherlands, pp 179–226Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Centro de Recursos Naturais e Ambiente (CERENA), Instituto Superior TécnicoUniversity of LisbonLisbonPortugal
  2. 2.Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior TécnicoUniversity of LisbonBobadela LRSPortugal

Personalised recommendations