Advertisement

Groundwater resources in a Mediterranean mountainous region: environmental impact of road de-icing

  • J. Espinha Marques
  • J. M. Marques
  • A. Carvalho
  • P. M. Carreira
  • R. Moura
  • C. Mansilha
Original Article
  • 13 Downloads

Abstract

Water from mountainous regions is a strategic natural resource. In Mediterranean mountainous regions, which, in many cases, correspond to protected areas, high-altitude roads are often the main threat to the sustainability of water resources. In these regions, the regular socioeconomic functioning requires frequent road de-icing operations which normally consist of spreading NaCl and other chemicals, such as CaCl2, in pavements. The main purpose of this research is to assess the environmental impact of road de-icing on groundwater resources in a Mediterranean mountainous region and to describe it by means of a hydrogeological conceptual model. The research focused in a cross-sectional sector located in Serra da Estrela (Central Portugal), where a hydrogeological inventory was carried out, followed by hydrogeochemical and hydrogeophysical studies. The results clearly identify different hydrogeochemical signatures in polluted (Cl–Na facies and higher EC) and unpolluted (HCO3–Na, Cl–Na, and very low EC). The relation of hydrogeochemistry and altitude is complex and depends on both natural processes (namely, water–rock interaction) and anthropic processes (de-icing operations). The hydrogeophysical survey systematically identified the presence of a pollution plume migrating downstream from roads.

Keywords

Groundwater pollution Road de-icing Water resources protection Mountain hydrology 

Notes

Acknowledgements

This work was developed with funding provided by the Institute of Earth Sciences (ICT), under contracts UID/GEO/04683/2013 with FCT (the Portuguese Science and Technology Foundation), and COMPETE POCI-01-0145-FEDER-007690. CERENA/IST thankfully acknowledges the FCT support through the UID/ECI/04028/2013 Project, and C2TN/IST gratefully acknowledges the FCT support through the UID/Multi/04349/2013. The authors acknowledge the Portuguese Institute for Nature Conservation and Forests (ICNF) for supporting field work as well as the anonymous referees for their constructive suggestions.

References

  1. AEMET-IM (2011) Iberian Climate Atlas, Air Temperature and Precipitation (1971–2000)Google Scholar
  2. Afonso MJ, Chaminé HI, Marques JM, Carreira PM, Guimarães L, Guilhermino L, Gomes A, Fonseca PE, Pires A, Rocha F (2010) Environmental issues in urban groundwater systems: a multidisciplinary study of the Paranhos and Salgueiros spring waters, Porto (NW Portugal). Environ Earth Sci 61(2):379–392. doi: 10.1007/s12665-009-0351-7 CrossRefGoogle Scholar
  3. Aureli A (2002) What’s ahead in UNESCO’s International Hydrological Programme (IHP VI 2002-2007). Hydrogeol J 10(3):349–350. doi: 10.1007/s10040-002-0211-y CrossRefGoogle Scholar
  4. Bartlett AJ, Rochfort Q, Brown LR, Marsalek J (2012) Causes of toxicity to Hyalella azteca in a stormwater management facility receiving highway runoff and snowmelt. Part I: polycyclic aromatic hydrocarbons and metals. Sci Total Environ 414:227–237. doi: 10.1016/j.scitotenv.2011.11.041 CrossRefGoogle Scholar
  5. Beasley G, Kneale P (2002) Reviewing the impact of metals and PAHs on macroinvertebrates in urban watercourses. Prog Phys Geogr 26(2):236–270. doi: 10.1191/0309133302pp334ra CrossRefGoogle Scholar
  6. Betts AR, Gharabaghi B, McBean EA, Levison J, Parker B (2015) Salt vulnerability assessment methodology for municipal supply wells. J Hydrol 531(3):523–533. doi: 10.1016/j.jhydrol.2015.11.004 CrossRefGoogle Scholar
  7. Boavida MJ, Gliwicz ZM (1996) Limnological and biological characteristics of the alpine lakes of Portugal. Lirnnetica 12(2):39–45Google Scholar
  8. Carreira PM, Marques JM, Espinha Marques J, Chaminé HI, Fonseca PE, Monteiro Santos F, Moura RM, Carvalho JM (2011) Defining the dynamics of groundwater in Serra da Estrela Mountain area, central Portugal: an isotopic and hydrogeochemical approach. Hydrogeol J 19(1):117–131. doi: 10.1007/s10040-010-0675-0 CrossRefGoogle Scholar
  9. Carvalho A, Espinha Marques J, Marques JM, Carreira PM, Moura R, Guerner Dias A, Chaminé HI, Rocha F, Saraiva R, Tavares M, Mansilha C (2012) Groundwater contamination by road deicing chemicals: the case of Serra da Estrela (Central Portugal) [in Portuguese]. Comunicações Geológicas 99(1):19–25Google Scholar
  10. Chaves ML, Rieradevall M, Chainho P, Costa JL, Costa MJ, Prat N (2008) Macroinvertebrate communities of non-glacial high altitude intermittent streams. Freshw Biol 53:55–76. doi: 10.1111/j.1365-2427.2007.01867.x Google Scholar
  11. Daveau S, Coelho C, Costa VG, Carvalho L (1977) Distribution and rhythm of precipitation in Portugal [in French]. Memórias do Centro de Estudos Geográficos 3:192Google Scholar
  12. Daveau S, Ferreira AB, Ferreira N, Vieira G (1997) New observations on the Serra da Estrela glaciation [in Portuguese]. Estudos do Quaternário 1:41–51Google Scholar
  13. EEA, European Environment Agency (2010) Europe’s ecological backbone: recognising the true value of our mountains. EEA Report No 6/2010Google Scholar
  14. EPA, U.S. Environmental Protection Agency (2002) Managing highway deicing to prevent contamination of drinking water. Source Water Protection Practices Bulletin EPA 816-F-02-019Google Scholar
  15. Espinha Marques J, Marques JM, Aguiar C (2010) A groundwater system in a mountain environment (Serra da Estrela, Portugal). In: Evelpidou N, de Figueiredo T, Mauro F, Vahap A, Vassilopoulos A (eds) Natural heritage in Europe from east to west. Springer, Berlin, pp 163–167CrossRefGoogle Scholar
  16. Espinha Marques J, Samper J, Pisani B, Alvares D, Carvalho JM, Chaminé HI, Marques JM, Vieira GT, Mora C, Borges FS (2011) Evaluation of water resources in a high-mountain basin in Serra da Estrela, Central Portugal, using a semi-distributed hydrological model. Environ Earth Sci 62(6):1219–1234. doi: 10.1007/s12665-010-0610-7 CrossRefGoogle Scholar
  17. Espinha Marques J, Marques JM, Chaminé HI, Carreira PM, Fonseca PE, Monteiro Santos FA, Moura R, Samper J, Pisani B, Teixeira J, Carvalho JM, Rocha F, Borges FS (2013) Conceptualizing a mountain hydrogeologic system by using an integrated groundwater assessment (Serra da Estrela, Central Portugal): a review. Geosci J 17(3):371–386. doi: 10.1007/S12303-013-0019-X CrossRefGoogle Scholar
  18. Espinha Marques J, Marques JM, Carvalho A, Carreira PM, Mansilha C (2017) Impact of road de-icing on the hydrogeochemistry of groundwater from a mountain area (Serra da Estrela, Central Portugal). Procedia Earth Planet Sci 17:964–967. doi: 10.1016/j.proeps.2017.01.039 CrossRefGoogle Scholar
  19. Gliwicz ZM, Boavida MJ (1996) Clutch size and body size at first reproduction in Daphnia pulicaria at different levels of food and predation. J Plankton Res 18(6):863–880CrossRefGoogle Scholar
  20. Godwin KS, Hafner SD, Buff MF (2003) Long-term trends in sodium and chloride in the Mohawk River, New York: the effect of fifty years of road-salt application. Environ Pollut 124(2):273–281. doi: 10.1016/S0269-7491(02)00481-5 CrossRefGoogle Scholar
  21. Granato GE (1996) Deicing chemicals as source of constituents of highway runoff. Transp Res Rec 1533:50–58CrossRefGoogle Scholar
  22. Guo Q, Wang Y (2009) Trace element hydrochemistry indicating water contamination in an around the Yangbajing geothermal field, Tibet, China. Bull Environ Contam Toxicol 83:608–613. doi: 10.1007/s00128-009-9812-7 CrossRefGoogle Scholar
  23. Gurdak JJ (2014) Groundwater vulnerability. In: Eslamian S (ed) Handbook of engineering hydrology, vol 3. Environmental Hydrology and Water Management. CRC Press, Boca Raton, pp 145–162CrossRefGoogle Scholar
  24. Hawkins RH, Judd JH (1973) Water pollution as affected by street salting. J Am Water Resour Assoc 8(6):1246–1252CrossRefGoogle Scholar
  25. Hellstén PP, Kivimäkia A, Ilkka T, Miettinenb IT, Mäkinena RP, Salminena JM, Nysténa TH (2005) Degradation of potassium formate in the unsaturated zone of a sandy aquifer. J Environ Qual 34:1665–1671. doi: 10.2134/jeq2004.0323 CrossRefGoogle Scholar
  26. Jansen J, Sequeira MPSM (1999) The vegetation of shallow waters and seasonally inundated habitats (Littorelletea and Isoeto-Nanojuncetea) in the higher parts of the Serra da Estrela, Portugal. Mitteilungen des Badischen Landesvereins fur Naturkunde 17:449–462Google Scholar
  27. Karamouz M, Ahmadi A, Akhbari M (2011) Groundwater hydrology. CRC Press, Taylor & Francis Group, New YorkGoogle Scholar
  28. Ketcham SA, Minsk LD, Blackburn RR, Fleege EJ (1996) Manual of practice for an effective anti-icing program, a guide for highway winter maintenance personnel. US Army Cold Regions Research and Engineering Laboratory, Report FHWA-RD-95-202Google Scholar
  29. Mansilha C, Carvalho A, Guimarães P, Espinha Marques J (2014) Water quality concerns due to forest fires: polycyclic aromatic hydrocarbons (PAH) contamination of groundwater from mountain areas. J Toxicol Environ Health Part A 77(14–16):806–815. doi: 10.1080/15287394.2014.909301 CrossRefGoogle Scholar
  30. Migoń P, Vieira G (2014) Granite geomorphology and its geological controls, Serra da Estrela, Portugal. Geomorphology 226:1–14. doi: 10.1016/j.geomorph.2014.07.027 CrossRefGoogle Scholar
  31. Mora C (2006) Climates of Serra da Estrela: regional features and local particularities of the plateaus and the Zêzere high valley [in Portuguese]. Ph.D. thesis, University of LisbonGoogle Scholar
  32. Mora C (2010) A synthetic map of the climatopes of the Serra da Estrela (Portugal). J Maps 6(1):591–608. doi: 10.4113/jom.2010.1112 CrossRefGoogle Scholar
  33. Mora C, Vieira GT (2004) Radiation balance of the plateaus of Serra de Estrela (Portugal) in a winter morning: methodology and first results [in Spanish]. Boletín de la Real Sociedad Española de Historia Natural (Sec. Geol.) 99(1–4):37–45Google Scholar
  34. OJEU, Official Journal of the European Union (2006) Directive 2006/118/EC of the European parliament and the council of 12 December 2006 on the protection of groundwater against pollution and deterioration. Official Journal of the European Union L 372/19-L 372/31Google Scholar
  35. Oliveira JT, Pereira E, Ramalho M, Antunes MT, Monteiro JH (1992) Geologic map of Portugal, scale 1/500 000, 5th edn. Serviços Geológicos de Portugal, LisbonGoogle Scholar
  36. Perera N, Gharabaghi B, Howard K (2013) Groundwater chloride response in the highland creek watershed due to road salt application: a re-assessment after 20 years. J Hydrol 479:159–168. doi: 10.1016/j.jhydrol.2012.11.057 CrossRefGoogle Scholar
  37. Rasa K, Peltovuoria T, Hartikainena H (2006) Effects of de-icing chemicals sodium chloride and potassium formate on cadmium solubility in a coarse mineral soil. Sci Total Environ 2–3:819–825. doi: 10.1016/j.scitotenv.2005.08.007 CrossRefGoogle Scholar
  38. Ribeiro A, Munhá J, Dias R, Mateus A, Pereira E, Ribeiro L, Fonseca PE, Araújo A, Oliveira JT, Romão J, Chaminé HI, Coke C, Pedro J (2007) Geodynamic evolution of the SW Europe Variscides. Tectonics 26(TC6009):1–24. doi: 10.1029/2006TC002058 Google Scholar
  39. Rodrigues P, Rodrigues R, Costa B, Martins AT, Esteves da Silva J (2010) Multivariate analysis of the water quality variation in Serra da Estrela (Portugal) Natural Park as a consequence of road deicing with salt. Chemom Intell Lab Syst 102(2):130–135. doi: 10.1016/j.chemolab.2010.04.014 CrossRefGoogle Scholar
  40. Rosa GM, Laurentino T, Madeira M (2012) Field observation of foraging behavior by a group of adult diving beetles Agabus (Gaurodytes) bipustulatus preying on an adult Lissotriton boscai. Entomol Sci 15:343–345. doi: 10.1111/j.1479-8298.2011.00509.x CrossRefGoogle Scholar
  41. Samper J, Pisani B, Espinha Marques J (2015) Hydrological models of interflow in three Iberian mountain basins. Environ Earth Sci 73:2645–2656. doi: 10.1007/s12665-014-3676-9 CrossRefGoogle Scholar
  42. Schipper PNM, Comans RNJ, Dijkstra JJ, Vergouwen L (2007) Runoff and windblown vehicle spray from road surfaces, risks and measures for soil and water. Water Sci Technol 55(3):87–96. doi: 10.2166/wst.2007.076 CrossRefGoogle Scholar
  43. Tixier G, Rochfort Q, Grapentine L, Marsalek J, Lafont M (2012) Spatial and seasonal toxicity in a stormwater management facility: evidence obtained by adapting an integrated sediment quality assessment approach. Water Res 46(20):6671–6682. doi: 10.1016/j.watres.2011.12.031 CrossRefGoogle Scholar
  44. TRB, Transportation Research Board (1991) Highway deicing, comparing salt and calcium magnesium acetate. Special Report 235Google Scholar
  45. Trenouth WR, Gharabaghi B, Perera N (2015) Road salt application planning tool for winter de-icing operations. J Hydrol 524:401–410. doi: 10.1016/j.jhydrol.2015.03.004 CrossRefGoogle Scholar
  46. Turismo de Portugal [Tourism of Portugal] (2011) The tourism in 2009 [in Portuguese]. Direcção de Estudos e Planeamento Estratégico/Departamento de Informação EstatísticaGoogle Scholar
  47. Vieira GT (2004) Geomorphology of the plateaus and high valleys of Serra da Estrela: cold environments from Late Pleistocene and present dynamics [in Portuguese]. PhD thesis, University of LisbonGoogle Scholar
  48. Vieira GT and Mora C (1998) General characteristics of the climate of the Serra da Estrela. In: Vieira GT (ed) Glaciar Periglacial Geomorphology of the Serra da Estrela, Guidebook for the field-trip. IGU Commission on Climate Change and Periglacial Environments, 26–28 August 1998, CEG and Department of Geology, University of Lisbon, pp 26–36Google Scholar
  49. Viviroli D, Weingartner R (2008) “Water towers”: a global view of the hydrological importance of mountains. In: Wiegandt E (ed) Mountains: sources of water, sources of knowledge. Advances in Global Change Research, vol 31, pp 15–20Google Scholar
  50. Viviroli D, Archer DR, Buytaert W, Fowler HJ, Greenwood GB, Hamlet AF, Huang Y, Koboltschnig G, Litaor MI, López-Moreno JI, Lorentz S, Schädler B, Schwaiger K, Vuille M, Woods R (2010) Climate change and mountain water resources: overview and recommendations for research, management and politicy. Hydrol Earth Syst Sci Discuss 7:2829–2895. doi: 10.7892/boris.9204 CrossRefGoogle Scholar
  51. Weingartner R, Viviroli D, Greenwood G (2009) Mountain waters in a changing world. In: Jandl R, Borsdorf A, van Miegroet H, Lackner R, Psenner R (eds) Global change and sustainable development in mountain regions, alpine space—man and environment, vol 7, Innsbruck, pp 11–24Google Scholar
  52. Wongfun N, Plötze M, Furrer G, Brandl H (2014) Weathering of granite from the Damma glacier area: the contribution of cyanogenic bacteria. Geomicrobiology 31:93–100. doi: 10.1080/01490451.2013.802396 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Instituto de Ciências da Terra e Departamento de Geociências, Ambiente e Ordenamento do Território, Faculdade de CiênciasUniversidade do PortoPortoPortugal
  2. 2.CERENA, Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal
  3. 3.MatosinhosPortugal
  4. 4.C2TN, Campus Tecnológico e Nuclear, Instituto Superior TécnicoUniversidade de LisboaBobadela LRSPortugal
  5. 5.Instituto Nacional de Saúde Doutor Ricardo JorgePortoPortugal
  6. 6.REQUIMTEUniversidade do PortoPortoPortugal

Personalised recommendations