Skip to main content

Advertisement

Log in

Polymeric Biomaterials for Scaffold-Based Bone Regenerative Engineering

  • Published:
Regenerative Engineering and Translational Medicine Aims and scope Submit manuscript

Abstract

Reconstruction of large bone defects resulting from trauma, neoplasm, or infection is a challenging problem in reconstructive surgery. The need for bone grafting has been increasing steadily partly because of our enhanced capability to salvage limbs after major bone loss. Engineered bone graft substitutes can have advantages such as lack of antigenicity, high availability, and varying properties depending on the applications chosen for use. These favorable attributes have contributed to the rise of scaffold-based polymeric tissue regeneration. Critical components in the scaffold-based polymeric regenerative engineering approach often include (1) the existence of biodegradable polymeric porous structures with properties selected to promote tissue regeneration and while providing appropriate mechanical support during tissue regeneration, (2) cellular populations that can influence and enhance regeneration, and (3) the use of growth and morphogenetic factors which can influence cellular migration, differentiation, and tissue regeneration in vivo. Biodegradable polymers constitute an attractive class of biomaterials for the development of scaffolds due to their flexibility in chemistry and their ability to produce biocompatible degradation products. This paper presents an overview of polymeric scaffold-based bone tissue regeneration and reviews approaches as well as the particular roles of biodegradable polymers currently in use.

Lay Summary

Biomaterials have become an indispensable tool used in biomedical applications ranging from scaffolds for regenerative engineering to controlled drug delivery and immunomodulation. Regenerative engineering is a developing multidisciplinary field of research that employs the principles of advanced materials science, stem cell science, physics, developmental biology, and clinical translation for the regeneration of damaged tissues. In this field, biomaterials can play a major role. Degradable polymeric biomaterials can be excellent components for developing 3D porous structures used as scaffolds for tissue regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Laurencin CT, Khan Y. Regenerative engineering. In: American Association for the advancement of science. 2012.

  2. Gunatillake PA, Adhikari R. Biodegradable synthetic polymers for tissue engineering. Eur Cell Mater. 2003;5(1):1–16.

    Google Scholar 

  3. Narayanan N, Jiang C, Uzunalli G, Thankappan SK, Laurencin CT, Deng M. Polymeric electrospinning for musculoskeletal regenerative engineering. Regen Eng Transl Med. 2016;2(2):69–84.

    Google Scholar 

  4. Piskin E. Biodegradable polymers as biomaterials. J Biomater Sci Polym Ed. 1995;6(9):775–95.

    Google Scholar 

  5. Oliva N, Unterman S, Zhang Y, Conde J, Song HS, Artzi N. Personalizing biomaterials for precision nanomedicine considering the local tissue microenvironment. Adv Healthcare Mater. 2015;4(11):1584–99.

    Google Scholar 

  6. Goddard JM, Hotchkiss J. Polymer surface modification for the attachment of bioactive compounds. Prog Polym Sci. 2007;32(7):698–725.

    Google Scholar 

  7. Shin H, Jo S, Mikos AG. Biomimetic materials for tissue engineering. Biomaterials. 2003;24(24):4353–64.

    Google Scholar 

  8. Lanza R, Langer R, Vacanti JP. Principles of tissue engineering. Academic; 2011.

  9. Sabir MI, Xu X, Li L. A review on biodegradable polymeric materials for bone tissue engineering applications. J Mater Sci. 2009;44(21):5713–24.

    Google Scholar 

  10. Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog Polym Sci. 2007;32(8):762–98.

    Google Scholar 

  11. Nair LS, Laurencin CT. Polymers as biomaterials for tissue engineering and controlled drug delivery. In: Tissue engineering I. Springer; 2005:47–90.

  12. Pina S, Oliveira JM, Reis RL. Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review. Adv Mater. 2015;27(7):1143–69.

    Google Scholar 

  13. Campana V, Milano G, Pagano E, Barba M, Cicione C, Salonna G, et al. Bone substitutes in orthopaedic surgery: from basic science to clinical practice. J Mater Sci Mater Med. 2014;25(10):2445–61.

    Google Scholar 

  14. Ikada Y. Challenges in tissue engineering. J R Soc Interface. 2006;3(10):589–601.

    Google Scholar 

  15. Khademhosseini A, Vacanti JP, Langer R. Progress in tissue engineering. Sci Am. 2009;300(5):64–71.

    Google Scholar 

  16. Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng. 2012;40(5).

  17. Ko EK, Jeong SI, Rim NG, Lee YM, Shin H, Lee B-K. In vitro osteogenic differentiation of human mesenchymal stem cells and in vivo bone formation in composite nanofiber meshes. Tissue Eng A. 2008;14(12):2105–19.

    Google Scholar 

  18. Velasco MA, Narváez-Tovar CA, Garzón-Alvarado DA. Design, materials, and mechanobiology of biodegradable scaffolds for bone tissue engineering. Biomed Res Int. 2015;2015.

  19. Matassi F, Nistri L, Paez DC, Innocenti M. New biomaterials for bone regeneration. Clin Cases Miner Bone Metab. 2011;8(1):21.

    Google Scholar 

  20. Athanasiou K, Zhu C-F, Lanctot D, Agrawal C, Wang X. Fundamentals of biomechanics in tissue engineering of bone. Tissue Eng. 2000;6(4):361–81.

    Google Scholar 

  21. Elvers D, Song CH, Steinbüchel A, Leker J. Technology trends in biodegradable polymers: evidence from patent analysis. Polym Rev. 2016;56(4):584–606.

    Google Scholar 

  22. Ogueri KS, Ivirico JLE, Nair LS, Allcock HR, Laurencin CT. Biodegradable polyphosphazene-based blends for regenerative engineering. Regen Eng Transl Med. 2017:1–17.

  23. Deng M, Kumbar SG, Nair LS, Weikel AL, Allcock HR, Laurencin CT. Biomimetic structures: biological implications of dipeptide-substituted polyphosphazene–polyester blend nanofiber matrices for load-bearing bone regeneration. Adv Funct Mater. 2011;21(14):2641–51.

    Google Scholar 

  24. Tuan RS, Boland G, Tuli R. Adult mesenchymal stem cells and cell-based tissue engineering. Arthritis Res Ther. 2002;5(1):32.

    Google Scholar 

  25. Bianco P, Riminucci M, Gronthos S, Robey PG. Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells. 2001;19(3):180–92.

    Google Scholar 

  26. Chamberlain G, Fox J, Ashton B, Middleton J. Concise review: Mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells. 2007;25(11):2739–49.

    Google Scholar 

  27. Yang G, Rothrauff BB, Tuan RS. Tendon and ligament regeneration and repair: clinical relevance and developmental paradigm. Birth Defects Res C Embryo Today. 2013;99(3):203–22.

    Google Scholar 

  28. Pipino C, Pandolfi A. Osteogenic differentiation of amniotic fluid mesenchymal stromal cells and their bone regeneration potential. World J Stem Cells. 2015;7(4):681.

    Google Scholar 

  29. Yaszemski MJ, Payne RG, Hayes WC, Langer R, Mikos AG. Evolution of bone transplantation: molecular, cellular and tissue strategies to engineer human bone. Biomaterials. 1996;17(2):175–85.

    Google Scholar 

  30. Khosla S, Westendorf JJ, Oursler MJ. Building bone to reverse osteoporosis and repair fractures. J Clin Invest. 2008;118(2):421.

    Google Scholar 

  31. Hutmacher DW, Schantz JT, Lam CXF, Tan KC, Lim TC. State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J Tissue Eng Regen Med. 2007;1(4):245–60.

    Google Scholar 

  32. Bilezikian JP, Raisz LG, Martin TJ. Principles of bone biology. Academic; 2008.

  33. Deng M. Novel biocompatible polymeric blends for bone regeneration: material and matrix design and development. 2010.

  34. Weiner S, Traub W. Bone structure: from angstroms to microns. FASEB J. 1992;6(3):879–85.

    Google Scholar 

  35. Buckwalter J, Glimcher M, Cooper R, Recker R. Bone biology. I: structure, blood supply, cells, matrix, and mineralization. Instr Course Lect. 1996;45:371.

    Google Scholar 

  36. Rho J-Y, Kuhn-Spearing L, Zioupos P. Mechanical properties and the hierarchical structure of bone. Med Eng Phys. 1998;20(2):92–102.

    Google Scholar 

  37. Anseth KS, Shastri VR, Langer R. Photopolymerizable degradable polyanhydrides with osteocompatibility. Nat Biotechnol. 1999;17(2)

  38. Turner C, Chandran A, Pidaparti R. The anisotropy of osteonal bone and its ultrastructural implications. Bone. 1995;17(1):85–9.

    Google Scholar 

  39. Park J, Lakes RS. Biomaterials: an introduction: Springer; 2007.

  40. Buckwalter J, Glimcher M, Cooper R, Recker R. Bone biology. Part II. Formation form, modeling, remodeling, and regulation of cell function. J Bone Joint Surg Br. 1995;77(8):1276–89.

    Google Scholar 

  41. Giraud-Guille M-M. Twisted plywood architecture of collagen fibrils in human compact bone osteons. Calcif Tissue Int. 1988;42(3):167–80.

    Google Scholar 

  42. Whyte MP. Hypophosphatasia and the role of alkaline phosphatase in skeletal mineralization. Endocr Rev. 1994;15(4):439–61.

    Google Scholar 

  43. Reddi AH. Role of morphogenetic proteins in skeletal tissue engineering and regeneration. Nat Biotechnol. 1998;16(3):247–52.

    Google Scholar 

  44. Heinegård D, Oldberg A. Structure and biology of cartilage and bone matrix noncollagenous macromolecules. FASEB J. 1989;3(9):2042–51.

    Google Scholar 

  45. Weiner S, Wagner HD. The material bone: structure-mechanical function relations. Annu Rev Mater Sci. 1998;28(1):271–98.

    Google Scholar 

  46. Zhang C, Mcadams DA, Grunlan JC. Nano/micro-manufacturing of bioinspired materials: a review of methods to mimic natural structures. Adv Mater. 2016;28(30):6292–321.

    Google Scholar 

  47. O’Brien FJ. Biomaterials & scaffolds for tissue engineering. Mater Today. 2011;14(3):88–95.

    Google Scholar 

  48. Middleton JC, Tipton AJ. Synthetic biodegradable polymers as orthopedic devices. Biomaterials. 2000;21(23):2335–46.

    Google Scholar 

  49. Yin J, Luan S. Opportunities and challenges for the development of polymer-based biomaterials and medical devices. Regener Biomater. 2016;3(2):129–35.

    Google Scholar 

  50. Gunatillake P, Mayadunne R, Adhikari R. Recent developments in biodegradable synthetic polymers. Biotechnol Annu Rev. 2006;12:301–47.

    Google Scholar 

  51. Boyan BD, Hummert TW, Dean DD, Schwartz Z. Role of material surfaces in regulating bone and cartilage cell response. Biomaterials. 1996;17(2):137–46.

    Google Scholar 

  52. Thomson RC, Yaszemski MJ, Powers JM, Mikos AG. Fabrication of biodegradable polymer scaffolds to engineer trabecular bone. J Biomater Sci Polym Ed. 1996;7(1):23–38.

    Google Scholar 

  53. Griffith LG, Naughton G. Tissue engineering—current challenges and expanding opportunities. Science. 2002;295(5557):1009–14.

    Google Scholar 

  54. Södergård A, Stolt M. Properties of lactic acid based polymers and their correlation with composition. Prog Polym Sci. 2002;27(6):1123–63.

    Google Scholar 

  55. Chujo K, Kobayashi H, Suzuki J, Tokuhara S, Tanabe M. Ring-opening polymerization of glycolide. Macromol Chem Phys. 1967;100(1):262–6.

    Google Scholar 

  56. Shin M, Yoshimoto H, Vacanti JP. In vivo bone tissue engineering using mesenchymal stem cells on a novel electrospun nanofibrous scaffold. Tissue Eng. 2004;10(1–2):33–41.

    Google Scholar 

  57. Katti D, Lakshmi S, Langer R, Laurencin C. Toxicity, biodegradation and elimination of polyanhydrides. Adv Drug Deliv Rev. 2002;54(7):933–61.

    Google Scholar 

  58. Ulery BD, Nair LS, Laurencin CT. Biomedical applications of biodegradable polymers. J Polym Sci B Polym Phys. 2011;49(12):832–64.

    Google Scholar 

  59. Vroman I, Tighzert L. Biodegradable polymers. Materials. 2009;2(2):307–44.

    Google Scholar 

  60. Stevens MM. Biomaterials for bone tissue engineering. Mater Today. 2008;11(5):18–25.

    Google Scholar 

  61. Carlini AS, Adamiak L, Gianneschi NC. Biosynthetic polymers as functional materials. Macromolecules. 2016;49(12):4379–94.

    Google Scholar 

  62. Yokoyama A, Miyakoshi R, Yokozawa T. Chain-growth polymerization for poly (3-hexylthiophene) with a defined molecular weight and a low polydispersity. Macromolecules. 2004;37(4):1169–71.

    Google Scholar 

  63. Braun D, Cherdron H, Rehahn M, Ritter H, Voit B. Synthesis of macromolecules by step growth polymerization. In: Polymer synthesis: theory and practice. Berlin, Heidelberg: Springer; 2013. p. 259–322.

  64. Bonartsev A, Myshkina V, Nikolaeva D, Furina E, Makhina T, Livshits V, et al. Biosynthesis, biodegradation, and application of poly (3-hydroxybutyrate) and its copolymers-natural polyesters produced by diazotrophic bacteria. Communicating Current Research and Educational Topics and Trends in Appl Microbiol. 2007;1:295–307.

    Google Scholar 

  65. Agrawal C, Athanasiou K, Heckman J: Biodegradable PLA-PGA polymers for tissue engineering in orthopaedics. In: Materials Science Forum. 1997. Trans Tech Publ: 115–128.

  66. Allcock HR. The expanding field of polyphosphazene high polymers. Dalton Trans. 2016;45(5):1856–62.

    Google Scholar 

  67. Eom IY, Oh YH, Park SJ, Lee SH, Yu JH. Fermentative l-lactic acid production from pretreated whole slurry of oil palm trunk treated by hydrothermolysis and subsequent enzymatic hydrolysis. Bioresour Technol. 2015;185

  68. Lee SY. Poly(3-hydroxybutyrate) production from xylose by recombinant Escherichia coli. Bioprocess Eng. 1998;18

  69. Lee SY. Bacterial polyhydroxyalkanoates. Biotechnol Bioeng. 1996;49(1):1–14.

    Google Scholar 

  70. Litchfield J. Lactic acid, microbially produced. 2009.

  71. Lasprilla AJ, Martinez GA, Lunelli BH, Jardini AL, Maciel Filho R. Poly-lactic acid synthesis for application in biomedical devices—a review. Biotechnol Adv. 2012;30(1):321–8.

    Google Scholar 

  72. Seppälä JV, Korhonen H, Kylmä J, Tuominen J. General methodology for chemical synthesis of polyesters. Biopolymers Online. 2002;

  73. Maisonneuve L, Lebarbé T, Grau E, Cramail H. Structure–properties relationship of fatty acid-based thermoplastics as synthetic polymer mimics. Polym Chem. 2013;4(22):5472–517.

    Google Scholar 

  74. Coulembier O, Degée P, Hedrick JL, Dubois P. From controlled ring-opening polymerization to biodegradable aliphatic polyester: especially poly (β-malic acid) derivatives. Prog Polym Sci. 2006;31(8):723–47.

    Google Scholar 

  75. Albertsson A-C, Varma IK. Recent developments in ring opening polymerization of lactones for biomedical applications. Biomacromolecules. 2003;4(6):1466–86.

    Google Scholar 

  76. Masutani K, Kimura Y. Pla synthesis. From the monomer to the polymer. 2014.

  77. Codari F, Lazzari S, Soos M, Storti G, Morbidelli M, Moscatelli D. Kinetics of the hydrolytic degradation of poly (lactic acid). Polym Degrad Stab. 2012;97(11):2460–6.

    Google Scholar 

  78. Laurencin C, Khan Y, El-Amin SF. Bone graft substitutes. Expert Rev Med Devices. 2006;3(1):49–57.

    Google Scholar 

  79. Zhang Z, Ortiz O, Goyal R, Kohn J. Biodegradable polymers. Princ Tissue Eng. 2014:441–73.

  80. Chu C. Biotextiles as medical implants: 11. Materials for absorbable and nonabsorbable surgical sutures. Elsevier. Chapters; 2013.

  81. Chujo K, Kobayashi H, Suzuki J, Tokuhara S. Physical and chemical characteristics polyglycolide. Macromol Chem Phys. 1967;100(1):267–70.

    Google Scholar 

  82. Chu C-C, Von Fraunhofer JA, Greisler HP. Wound closure biomaterials and devices: CRC; 1996.

  83. Hyon S-H, Jamshidi K, Ikada Y. Synthesis of polylactides with different molecular weights. Biomaterials. 1997;18(22):1503–8.

    Google Scholar 

  84. Rodrigues MT, Carvalho PP, Gomes ME, Reis RL. Biomaterials in preclinical approaches for engineering skeletal tissues. 2015.

  85. Izwan S, Razak A, Fadzliana N, Sharif A, Aizan W, Rahman WA. Biodegradable polymers and their bone applications: a review. 2012.

  86. Pillai CKS, Sharma CP. Absorbable polymeric surgical sutures: chemistry, production, properties, biodegradability, and performance. J Biomater Appl. 2010;25(4):291–366.

    Google Scholar 

  87. Tiberiu N. Concepts in biological analysis of resorbable materials in oro-maxillo facial surgery.  Rev chi Oromaxilo-fac Implantol (in Romanian). 2011;2(1):33–8.

    Google Scholar 

  88. Auras R, Harte B, Selke S. An overview of polylactides as packaging materials. Macromol Biosci. 2004;4(9):835–64.

    Google Scholar 

  89. Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers. 2011;3(3):1377–97.

    Google Scholar 

  90. Wang Y, Mano JF. Influence of melting conditions on the thermal behaviour of poly (l-lactic acid). Eur Polym J. 2005;41(10):2335–42.

    Google Scholar 

  91. Truitt RR. Synthesis and characterization of biopolymer composites and their inorganic hosts. North Carolina State University; 2009.

  92. MatWeb L. Matweb: material property data. línea] Available: http://www.matweb.com/search/DataSheetaspx. 2013.

  93. Narayanan G, Vernekar VN, Kuyinu EL, Laurencin CT. Poly (lactic acid)-based biomaterials for orthopaedic regenerative engineering. Adv Drug Deliv Rev. 2016;107:247–76.

    Google Scholar 

  94. Bergsma JE, Rozema F, Bos R, Boering G, De Bruijn W, Pennings A. In vivo degradation and biocompatibility study of in vitro pre-degraded as-polymerized polylactide particles. Biomaterials. 1995;16(4):267–74.

    Google Scholar 

  95. Maurus PB, Kaeding CC. Bioabsorbable implant material review. Oper Tech Sports Med. 2004;12(3):158–60.

    Google Scholar 

  96. Chasin M. Biodegradable polymers as drug delivery systems, vol. 45: Informa Health Care; 1990.

  97. Tuominen J. Chain linked lactic acid polymers: polymerization and biodegradation studies. Helsinki University of Technology; 2003.

  98. Gliding D, Reed A. Biodegradable polymers for use in surgery: poly (glycolic)/poly (lactic acid) homo and co-polymers. Polymer. 1979;20(12):1459–64.

    Google Scholar 

  99. Reed A, Gilding D. Biodegradable polymers for use in surgery—poly (glycolic)/poly (lactic acid) homo and copolymers: 2. In vitro degradation. Polymer. 1981;22(4):494–8.

    Google Scholar 

  100. Jabbarzadeh E, Starnes T, Khan YM, Jiang T, Wirtel AJ, Deng M, et al. Induction of angiogenesis in tissue-engineered scaffolds designed for bone repair: a combined gene therapy–cell transplantation approach. Proc Natl Acad Sci. 2008;105(32):11099–104.

    Google Scholar 

  101. Borden M, Attawia M, Khan Y, Laurencin CT. Tissue engineered microsphere-based matrices for bone repair: design and evaluation. Biomaterials. 2002;23(2):551–9.

    Google Scholar 

  102. Böstman O. Absorbable implants for the fixation of fractures. J Bone Joint Surg Am. 1991;73(1):148–53.

    Google Scholar 

  103. Böstman O, Pihlajamäki H. Clinical biocompatibility of biodegradable orthopaedic implants for internal fixation: a review. Biomaterials. 2000;21(24):2615–21.

    Google Scholar 

  104. Woodruff MA, Hutmacher DW. The return of a forgotten polymer–polycaprolactone in the 21st century. Prog Polym Sci. 2010;35(10):1217–56.

    Google Scholar 

  105. Kweon H, Yoo MK, Park IK, Kim TH, Lee HC, Lee H-S, et al. A novel degradable polycaprolactone networks for tissue engineering. Biomaterials. 2003;24(5):801–8.

    Google Scholar 

  106. Chiari C, Koller U, Dorotka R, Eder C, Plasenzotti R, Lang S, et al. A tissue engineering approach to meniscus regeneration in a sheep model. Osteoarthr Cartil. 2006;14(10):1056–65.

    Google Scholar 

  107. Jang CH, Ahn SH, Yang G-H, Kim GH. A MSCs-laden polycaprolactone/collagen scaffold for bone tissue regeneration. RSC Adv. 2016;6(8):6259–65.

    Google Scholar 

  108. Park SJ, Jang Y-A, Lee H, Park A-R, Yang JE, Shin J, et al. Metabolic engineering of Ralstonia eutropha for the biosynthesis of 2-hydroxyacid-containing polyhydroxyalkanoates. Metab Eng. 2013;20:20–8.

    Google Scholar 

  109. Kim HS, Oh YH, Jang Y-A, Kang KH, David Y, Yu JH, et al. Recombinant Ralstonia eutropha engineered to utilize xylose and its use for the production of poly(3-hydroxybutyrate) from sunflower stalk hydrolysate solution. Microb Cell Factories. 2016;15(1):95.

    Google Scholar 

  110. Zinn M, Witholt B, Egli T. Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Adv Drug Deliv Rev. 2001;53(1):5–21.

    Google Scholar 

  111. Shelton JR, Agostini D, Lando J. Synthesis and characterization of poly-β-hydroxybutyrate. II. Synthesis of D-poly-β-hydroxybutyrate and the mechanism of ring-opening polymerization of β-butyrolactone. J Polym Sci A Polym Chem. 1971;9(10):2789–99.

    Google Scholar 

  112. Hori Y, Suzuki M, Yamaguchi A, Nishishita T. Ring-opening polymerization of optically active β-butyrolactone using distannoxane catalysts: synthesis of high-molecular-weight poly (3-hydroxybutyrate). Macromolecules 1993;26(20):5533–5534.

  113. Wang L, Wang Z-H, Shen C-Y, You M-L, Xiao J-F, Chen G-Q. Differentiation of human bone marrow mesenchymal stem cells grown in terpolyesters of 3-hydroxyalkanoates scaffolds into nerve cells. Biomaterials. 2010;31(7):1691–8.

    Google Scholar 

  114. Zhao S, Zhu M, Zhang J, Zhang Y, Liu Z, Zhu Y, et al. Three dimensionally printed mesoporous bioactive glass and poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) composite scaffolds for bone regeneration. J Mater Chem B. 2014;2(36):6106–18.

    Google Scholar 

  115. Park SJ, Lee TW, Lim SC, Kim TW, Lee H, Kim MK, et al. Biosynthesis of polyhydroxyalkanoates containing 2-hydroxybutyrate from unrelated carbon source by metabolically engineered Escherichia coli. Appl Microbiol Biotechnol. 2012;93

  116. Domb AJ, Amselem S, Shah J, Maniar M. Polyanhydrides: synthesis and characterization. In: Biopolymers I. Springer; 1993:93–141.

  117. Tamada J, Langer R. The development of polyanhydrides for drug delivery applications. J Biomater Sci Polym Ed. 1992;3(4):315–53.

    Google Scholar 

  118. Allcock HR, Morozowich NL. Bioerodible polyphosphazenes and their medical potential. Polym Chem. 2012;3(3):578–90.

    Google Scholar 

  119. Uhrich KE, Gupta A, Thomas TT, Laurencin CT, Langer R. Synthesis and characterization of degradable poly (anhydride-co-imides). Macromolecules. 1995;28(7):2184–93.

    Google Scholar 

  120. Uhrich K, Thomas T, Laurencin C, Langer R. In vitro degradation characteristics of poly (anhydride-imides) containing trimellitylimidoglycine. J Appl Polym Sci. 1997;63(11):1401–11.

    Google Scholar 

  121. Uhrich K, Larrier D, Laurencin C, Langer R. In vitro degradation characteristics of poly (anhydride-imides) containing pyromellitylimidoalanine. J Polym Sci A Polym Chem. 1996;34(7):1261–9.

    Google Scholar 

  122. Attawia MA, Uhrich KE, Botchwey E, Langer R, Laurencin CT. In vitro bone biocompatibility of poly (anhydride-co-imides) containing pyromellitylimidoalanine. J Orthop Res. 1996;14(3):445–54.

    Google Scholar 

  123. Ibim SE, Uhrich KE, Attawia M, Shastri VR, El-Amin SF, Bronson R, et al. Preliminary in vivo report on the osteocompatibility of poly (anhydride-co-imides) evaluated in a tibial model. J Biomed Mater Res A. 1998;43(4):374–9.

    Google Scholar 

  124. Muggli DS, Burkoth AK, Anseth KS. Crosslinked polyanhydrides for use in orthopedic applications: degradation behavior and mechanics. J Biomed Mater Res. 1999;46(2):271–8.

    Google Scholar 

  125. Anseth KS, Svaldi DC, Laurencin CT, Langer R. Photopolymerization of novel degradable networks for orthopedic applications. In: ACS Publications; 1997.

  126. Peter SJ, Suggs LJ, Yaszemski MJ, Engel PS, Mikos AG. Synthesis of poly (propylene fumarate) by acylation of propylene glycol in the presence of a proton scavenger. J Biomater Sci Polym Ed. 1999;10(3):363–73.

    Google Scholar 

  127. Kasper FK, Tanahashi K, Fisher JP, Mikos AG. Synthesis of poly (propylene fumarate). Nat Protoc. 2009;4(4):518.

    Google Scholar 

  128. Shung AK, Timmer MD, Jo S, Engel PS, Mikos AG. Kinetics of poly (propylene fumarate) synthesis by step polymerization of diethyl fumarate and propylene glycol using zinc chloride as a catalyst. J Biomater Sci Polym Ed. 2002;13(1):95–108.

    Google Scholar 

  129. Temenoff JS, Mikos AG. Injectable biodegradable materials for orthopedic tissue engineering. Biomaterials. 2000;21(23):2405–12.

    Google Scholar 

  130. Fisher JP, Holland TA, Dean D, Engel PS, Mikos AG. Synthesis and properties of photocross-linked poly (propylene fumarate) scaffolds. J Biomater Sci Polym Ed. 2001;12(6):673–87.

    Google Scholar 

  131. Peter SJ, Kim P, Yasko AW, Yaszemski MJ, Mikos AG. Crosslinking characteristics of an injectable poly (propylene fumarate)/β-tricalcium phosphate paste and mechanical properties of the crosslinked composite for use as a biodegradable bone cement. MRS Online Proceedings Library Archive; 1998;530.

  132. He S, Yaszemski MJ, Yasko AW, Engel PS, Mikos AG. Injectable biodegradable polymer composites based on poly (propylene fumarate) crosslinked with poly (ethylene glycol)-dimethacrylate. Biomaterials. 2000;21(23):2389–94.

    Google Scholar 

  133. He S, Timmer M, Yaszemski MJ, Yasko A, Engel P, Mikos A. Synthesis of biodegradable poly (propylene fumarate) networks with poly (propylene fumarate)–diacrylate macromers as crosslinking agents and characterization of their degradation products. Polymer. 2001;42(3):1251–60.

    Google Scholar 

  134. Fisher JP, Dean D, Mikos AG. Photocrosslinking characteristics and mechanical properties of diethyl fumarate/poly (propylene fumarate) biomaterials. Biomaterials. 2002;23(22):4333–43.

    Google Scholar 

  135. Peter S, Domb A, Kost J, Wiseman D. Handbook of biodegradable polymers. Chur: Harwood; 1997.

    Google Scholar 

  136. Allcock HR. Chemistry and applications of polyphosphazenes: Wiley-Interscience; 2003.

  137. Allcock H. Recent advances in phosphazene (phosphonitrilic) chemistry. Chem Rev. 1972;72(4):315–56.

    Google Scholar 

  138. Laurencin CT, Norman ME, Elgendy HM, El-Amin SF, Allcock HR, Pucher SR, et al. Use of polyphosphazenes for skeletal tissue regeneration. J Biomed Mater Res A. 1993;27(7):963–73.

    Google Scholar 

  139. Deng M, Nair LS, Nukavarapu SP, Jiang T, Kanner WA, Li X, et al. Dipeptide-based polyphosphazene and polyester blends for bone tissue engineering. Biomaterials. 2010;31(18):4898–908.

    Google Scholar 

  140. Ambrosio AM, Allcock HR, Katti DS, Laurencin CT. Degradable polyphosphazene/poly (α-hydroxyester) blends: degradation studies. Biomaterials. 2002;23(7):1667–72.

    Google Scholar 

  141. Deng M, Nair LS, Nukavarapu SP, Kumbar SG, Brown JL, Krogman NR, et al. Biomimetic, bioactive etheric polyphosphazene-poly (lactide-co-glycolide) blends for bone tissue engineering. J Biomed Mater Res A. 2010;92(1):114–25.

    Google Scholar 

  142. Deng M, Nair LS, Nukavarapu SP, Kumbar SG, Jiang T, Krogman NR, et al. Miscibility and in vitro osteocompatibility of biodegradable blends of poly [(ethyl alanato)(p-phenyl phenoxy) phosphazene] and poly (lactic acid-glycolic acid). Biomaterials. 2008;29(3):337–49.

    Google Scholar 

  143. Deng M, Nair LS, Nukavarapu SP, Kumbar SG, Jiang T, Weikel AL, et al. In situ porous structures: a unique polymer erosion mechanism in biodegradable dipeptide-based polyphosphazene and polyester blends producing matrices for regenerative engineering. Adv Funct Mater. 2010;20(17):2794–806.

    Google Scholar 

  144. Sethuraman S, Nair LS, El-Amin S, Farrar R, Nguyen MTN, Singh A, et al. In vivo biodegradability and biocompatibility evaluation of novel alanine ester based polyphosphazenes in a rat model. J Biomed Mater Res A. 2006;77(4):679–87.

    Google Scholar 

  145. Kumbar SG, Bhattacharyya S, Nukavarapu SP, Khan YM, Nair LS, Laurencin CT. In vitro and in vivo characterization of biodegradable poly (organophosphazenes) for biomedical applications. J Inorg Organomet Polym Mater. 2006;16(4):365–85.

    Google Scholar 

  146. Deng M, Kumbar SG, Wan Y, Toti US, Allcock HR, Laurencin CT. Polyphosphazene polymers for tissue engineering: an analysis of material synthesis, characterization and applications. Soft Matter. 2010;6(14):3119–32.

    Google Scholar 

  147. Bouët G, Marchat D, Cruel M, Malaval L, Vico L. In vitro three-dimensional bone tissue models: from cells to controlled and dynamic environment. Tissue Eng B Rev. 2014;21(1):133–56.

    Google Scholar 

  148. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P: The shape and structure of proteins. 2002.

  149. Meinel L, Hofmann S, Karageorgiou V, Kirker-Head C, McCool J, Gronowicz G, et al. The inflammatory responses to silk films in vitro and in vivo. Biomaterials. 2005;26(2):147–55.

    Google Scholar 

  150. Haarer JC. Proteins and amino acid-derived polymers. An introduction to biomaterials. 2006:122–128.

  151. Maurel D, Comps-Agrar L, Brock C, Rives M-L, Bourrier E, Ayoub MA, et al. Cell-surface protein-protein interaction analysis with time-resolved FRET and snap-tag technologies: application to GPCR oligomerization. Nat Methods. 2008;5(6):561–7.

    Google Scholar 

  152. Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, et al. Silk-based biomaterials. Biomaterials. 2003;24(3):401–16.

    Google Scholar 

  153. Gelse K, Pöschl E, Aigner T. Collagens—structure, function, and biosynthesis. Adv Drug Deliv Rev. 2003;55(12):1531–46.

    Google Scholar 

  154. Tjäderhane L, Nascimento FD, Breschi L, Mazzoni A, Tersariol IL, Geraldeli S, et al. Optimizing dentin bond durability: control of collagen degradation by matrix metalloproteinases and cysteine cathepsins. Dent Mater. 2013;29(1):116–35.

    Google Scholar 

  155. Geiger M, Li R, Friess W. Collagen sponges for bone regeneration with rhBMP-2. Adv Drug Deliv Rev. 2003;55(12):1613–29.

    Google Scholar 

  156. Ferreira AM, Gentile P, Chiono V, Ciardelli G. Collagen for bone tissue regeneration. Acta Biomater. 2012;8(9):3191–200.

    Google Scholar 

  157. Mandal A, Panigrahi S, Zhang C. Collagen as biomaterial for medical application—drug delivery and scaffolds for tissue regeneration: a review. Biol Eng Trans. 2010;2(2):63–88.

    Google Scholar 

  158. Böhm S, Strauß C, Stoiber S, Kasper C, Charwat V. Impact of source and manufacturing of collagen matrices on fibroblast cell growth and platelet aggregation. Materials. 2017;10(9):1086.

    Google Scholar 

  159. Parenteau-Bareil R, Gauvin R, Berthod F. Collagen-based biomaterials for tissue engineering applications. Materials. 2010;3(3):1863–87.

    Google Scholar 

  160. Bauer AJ, Liu J, Windsor LJ, Song F, Li B. Current development of collagen-based biomaterials for tissue repair and regeneration. Soft Mater. 2014;12(4):359–70.

    Google Scholar 

  161. Swann DA, Kuo J-W. Hyaluronic acid. In: Biomaterials: Springer; 1991. p. 285–305.

  162. Collins MN, Birkinshaw C. Hyaluronic acid based scaffolds for tissue engineering—a review. Carbohydr Polym. 2013;92(2):1262–79.

    Google Scholar 

  163. Brekke JH, Thacker K. Hyaluronan as a biomaterial. In: Guelcher SA, Hollinger JO, editors. An introduction to biomaterials. Boca Raton: CRC; 2006. p. 219–48.

    Google Scholar 

  164. Tammi MI, Day AJ, Turley EA. Hyaluronan and homeostasis: a balancing act. J Biol Chem. 2002;277(7):4581–4.

    Google Scholar 

  165. Al-Assaf S, Navaratnam S, Parsons B, Phillips G. Chain scission of hyaluronan by peroxynitrite. Arch Biochem Biophys. 2003;411(1):73–82.

    Google Scholar 

  166. Papakonstantinou E, Roth M, Karakiulakis G. Hyaluronic acid: a key molecule in skin aging. Dermatoendocrinology. 2012;4(3):253–8.

    Google Scholar 

  167. Prestwich GD, Marecak DM, Marecek JF, Vercruysse KP, Ziebell MR. Controlled chemical modification of hyaluronic acid: synthesis, applications, and biodegradation of hydrazide derivatives. J Control Release. 1998;53(1):93–103.

    Google Scholar 

  168. Mori M, Yamaguchi M, Sumitomo S, Takai Y. Hyaluronan-based biomaterials in tissue engineering. Acta Histochem Cytochem. 2004;37(1):1–5.

    Google Scholar 

  169. Lepidi S, Grego F, Vindigni V, Zavan B, Tonello C, Deriu G, et al. Hyaluronan biodegradable scaffold for small-caliber artery grafting: preliminary results in an animal model. Eur J Vasc Endovasc Surg. 2006;32(4):411–7.

    Google Scholar 

  170. Hunt DR, Jovanovic SA, Wikesjö UM, Wozney JM, Bernard GW. Hyaluronan supports recombinant human bone morphogenetic protein-2 induced bone reconstruction of advanced alveolar ridge defects in dogs. A pilot study. J Periodontol. 2001;72(5):651–8.

    Google Scholar 

  171. Saltzman WM, Kyriakides TR. Cell interactions with polymers. Principles of tissue engineering. 2000;2.

  172. Absolom D, Zingg W, Neumann A. Protein adsorption to polymer particles: role of surface properties. J Biomed Mater Res A. 1987;21(2):161–71.

    Google Scholar 

  173. Tang L, Thevenot P, Hu W. Surface chemistry influences implant biocompatibility. Curr Top Med Chem. 2008;8(4):270–80.

    Google Scholar 

  174. Horbett TA. Protein adsorption on biomaterials. In: ACS Publications; 1982.

  175. Schmidt DR, Waldeck H, Kao WJ: Protein adsorption to biomaterials. In: Biological interactions on materials surfaces. Springer; 2009:1–18.

  176. Roach P, Farrar D, Perry CC. Interpretation of protein adsorption: surface-induced conformational changes. J Am Chem Soc. 2005;127(22):8168–73.

    Google Scholar 

  177. Szott LM, Horbett TA. Protein interactions with surfaces: cellular responses, complement activation, and newer methods. Curr Opin Chem Biol. 2011;15(5):677–82.

    Google Scholar 

  178. Kao WJ. Evaluation of protein-modulated macrophage behavior on biomaterials: designing biomimetic materials for cellular engineering. Biomaterials. 1999;20(23):2213–21.

    Google Scholar 

  179. Ziomek C, Johnson M. Cell surface interaction induces polarization of mouse 8-cell blastomeres at compaction. Cell. 1980;21(3):935–42.

    Google Scholar 

  180. Gumbiner BM. Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell. 1996;84(3):345–57.

    Google Scholar 

  181. Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. In: Seminars in immunology: 2008. Elsevier: 86–100.

  182. Hu W-J, Eaton JW, Ugarova TP, Tang L. Molecular basis of biomaterial-mediated foreign body reactions. Blood. 2001;98(4):1231–8.

    Google Scholar 

  183. Folkman J, Moscona A. Role of cell shape in growth control. Nature. 1978;273(5661):345–9.

    Google Scholar 

  184. Tamada Y, Ikada Y. Fibroblast growth on polymer surfaces and biosynthesis of collagen. J Biomed Mater Res A. 1994;28(7):783–9.

    Google Scholar 

  185. Steele JG, Dalton B, Johnson G, Underwood PA. Polystyrene chemistry affects vitronectin activity: an explanation for cell attachment to tissue culture polystyrene but not to unmodified polystyrene. J Biomed Mater Res A. 1993;27(7):927–40.

    Google Scholar 

  186. Iijima K, Suzuki R, Iizuka A, Ueno-Yokohata H, Kiyokawa N, Hashizume M. Surface functionalization of tissue culture polystyrene plates with hydroxyapatite under body fluid conditions and its effect on differentiation behaviors of mesenchymal stem cells. Colloids Surf B: Biointerfaces. 2016;147:351–9.

    Google Scholar 

  187. Steele JG, McFarland C, Dalton BA, Johnson G, Evans MD, Rolfe Howlett C, et al. Attachment of human bone cells to tissue culture polystyrene and to unmodified polystyrene: the effect of surface chemistry upon initial cell attachment. J Biomater Sci Polym Ed. 1994;5(3):245–57.

    Google Scholar 

  188. Hersel U, Dahmen C, Kessler H. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials. 2003;24(24):4385–415.

    Google Scholar 

  189. Ikada Y. Surface modification of polymers for medical applications. Biomaterials. 1994;15(10):725–36.

    Google Scholar 

  190. Neff J, Caldwell K, Tresco P. A novel method for surface modification to promote cell attachment to hydrophobic substrates. J Biomed Mater Res A. 1998;40(4):511–9.

    Google Scholar 

  191. Xu L-C, Siedlecki CA. Effects of surface wettability and contact time on protein adhesion to biomaterial surfaces. Biomaterials. 2007;28(22):3273–83.

    Google Scholar 

  192. Langer R, Vacanti JP. Tissue engineering. Science (New York, NY). 1993;260(5110):920–6.

    Google Scholar 

  193. Zhu J, Marchant RE. Design properties of hydrogel tissue-engineering scaffolds. Expert Rev Med Devices. 2011;8(5):607–26.

    Google Scholar 

  194. Vladkova TG. Surface engineered polymeric biomaterials with improved biocontact properties. Int J Polym Sci. 2010;2010.

  195. Pierschbacher MD, Ruoslahti E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature. 1984;309(5963):30–3.

    Google Scholar 

  196. Hubbell JA, Massia SP, Desai NP, Drumheller PD. Endothelial cell-selective materials for tissue engineering in the vascular graft via a new receptor. Nat Biotechnol. 1991;9(6):568–72.

    Google Scholar 

  197. Arima Y, Kato K, Teramura Y, Iwata H. Design of biointerfaces for regenerative medicine. In: Polymers in nanomedicine. Springer; 2011:167–200.

  198. Ateh D, Navsaria H, Vadgama P. Polypyrrole-based conducting polymers and interactions with biological tissues. J R Soc Interface. 2006;3(11):741–52.

    Google Scholar 

  199. Bendrea A-D, Cianga L, Cianga I. Progress in the field of conducting polymers for tissue engineering applications. J Biomater Appl. 2011;26(1):3–84.

    Google Scholar 

  200. Song B, Zhao M, Forrester JV, McCaig CD. Electrical cues regulate the orientation and frequency of cell division and the rate of wound healing in vivo. Proc Natl Acad Sci. 2002;99(21):13577–82.

    Google Scholar 

  201. Shamos MH, Lavine LS. Piezoelectricity as a fundamental property of biological tissues. Nature. 1967;213(5073):267–9.

    Google Scholar 

  202. Telega JJ, Wojnar R. Piezoelectric effects in biological tissues. J Theor Appl Mech. 2002;40:723–59.

    Google Scholar 

  203. Ribeiro C, Sencadas V, Correia DM, Lanceros-Méndez S. Piezoelectric polymers as biomaterials for tissue engineering applications. Colloids Surf B: Biointerfaces. 2015;136:46–55.

    Google Scholar 

  204. Damaraju SM, Wu S, Jaffe M, Arinzeh TL. Structural changes in PVDF fibers due to electrospinning and its effect on biological function. Biomed Mater. 2013;8(4):045007.

    Google Scholar 

  205. Frias C, Reis J, Capela e Silva FC, Potes J, Simões J, Marques A. Polymeric piezoelectric actuator substrate for osteoblast mechanical stimulation. J Biomech. 2010;43(6):1061–6.

    Google Scholar 

  206. Ribeiro C, Moreira S, Correia V, Sencadas V, Rocha JG, Gama F, et al. Enhanced proliferation of pre-osteoblastic cells by dynamic piezoelectric stimulation. RSC Adv. 2012;2(30):11504–9.

    Google Scholar 

  207. Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani MH, Baharvand H, Kiani S, et al. Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering. J Tissue Eng Regen Med. 2011;5(4)

  208. Ribeiro C, Pärssinen J, Sencadas V, Correia V, Miettinen S, Hytönen VP, et al. Dynamic piezoelectric stimulation enhances osteogenic differentiation of human adipose stem cells. J Biomed Mater Res A. 2015;103(6):2172–5.

    Google Scholar 

  209. Reis J, Frias C, Canto e castro C, Botelho ML, Marques AT, Simões JAO, Capela e Silva F, Potes J. A new piezoelectric actuator induces bone formation in vivo: a preliminary study. Biomed Res Int. 2012;2012.

  210. Hayes J, Czekanska E, Richards R. The cell–surface interaction. In: Tissue engineering III: cell-surface interactions for tissue culture: Springer; 2011. p. 1–31.

  211. Weiss P. In vitro experiments on the factors determining the course of the outgrowing nerve fiber. J Exp Zool A Ecol Genet Physiol. 1934;68(3):393–448.

    Google Scholar 

  212. Brunette D. Fibroblasts on micromachined substrata orient hierarchically to grooves of different dimensions. Exp Cell Res. 1986;164(1):11–26.

    Google Scholar 

  213. Lamers E, Riet Jt, Domanski M, Luttge R, Figdor CG, Gardeniers JG, Walboomers XF, Jansen J. Dynamic cell adhesion and migration on nanoscale grooved substrates. 2012.

  214. Faia-Torres AB, Guimond-Lischer S, Rottmar M, Charnley M, Goren T, Maniura-Weber K, et al. Differential regulation of osteogenic differentiation of stem cells on surface roughness gradients. Biomaterials. 2014;35(33):9023–32.

    Google Scholar 

Download references

Funding

Support from NIH DP1 AR068147 and the Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cato T. Laurencin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogueri, K.S., Jafari, T., Escobar Ivirico, J.L. et al. Polymeric Biomaterials for Scaffold-Based Bone Regenerative Engineering. Regen. Eng. Transl. Med. 5, 128–154 (2019). https://doi.org/10.1007/s40883-018-0072-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40883-018-0072-0

Keywords

Navigation