Twisted cyclic quiver varieties on curves


We study the algebraic geometry of twisted Higgs bundles of cyclic type along complex curves. These objects, which generalize ordinary cyclic Higgs bundles, can be identified with representations of a cyclic quiver in a twisted category of coherent sheaves. Referring to the Hitchin fibration, we produce a fibre-wise geometric description of the locus of such representations within the ambient twisted Higgs moduli space. When the genus is 0, we produce a concrete geometric identification of the moduli space as a vector bundle over an associated (twisted) A-type quiver variety; we count the number of points at which the cyclic moduli space intersects a Hitchin fibre; and we describe explicitly certain \(\mathbb {C}^\times \)-flows into the nilpotent cone. We also extend this description to moduli of certain twisted cyclic quivers whose rank vector has components larger than 1. We show that, for certain choices of underlying bundle, such moduli spaces decompose as a product of cyclic quiver varieties in which each node is a line bundle.

This is a preview of subscription content, access via your institution.

Fig. 1


  1. 1.

    On \({\mathbb {P}}^1\), fixing \(\deg E=d\) forces , and so up to isomorphism there is no freedom in the choice of P. Also, is trivial. Hence, from the point of view of E, there is no difference between a \(\mathrm{GL}\), an \(\mathrm{SL}\), and a \(\mathrm{PGL}\) bundle. Strictly speaking, \(\Phi \) must be trace-free in the \(\mathrm{SL}\) and \(\mathrm{PGL}\) case, while the \(\mathrm{GL}\) case has no such restriction. This will make no impact on the analysis for \(g=0\), however, given that twisted cyclic Higgs bundles will always naturally have trace 0.

  2. 2.

    This also covers the case \(\mu _{\mathrm{tot}}>a_i\) for all i, simply by considering the dual quiver representation, which will have \(\mu _{\mathrm{tot}}<a_i\) for all i.


  1. 1.

    Álvarez-Cónsul, L., García-Prada, O., Schmitt, A.H.W.: On the geometry of moduli spaces of holomorphic chains over compact Riemann surfaces. IMRP Int. Math. Res. Pap. 2006, # 73597 (2006)

  2. 2.

    Aparicio-Arroyo, M., Bradlow, S., Collier, B., García-Prada, O., Gothen, P.B., Oliveira, A.: Exotic components of \({{\rm SO}}(p, q)\) surface group representations, and their Higgs bundle avatars. C. R. Math. Acad. Sci. Paris 356(6), 666–673 (2018)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Atiyah, M.F.: Riemann surfaces and spin structures. Ann. Sci. École Norm. Sup. 4, 47–62 (1971)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Baraglia, D.: Cyclic Higgs bundles and the affine Toda equations. Geom. Dedicata 174, 25–42 (2015)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Boden, H.U., Yokogawa, K.: Moduli spaces of parabolic Higgs bundles and parabolic \(K(D)\) pairs over smooth curves. Int. J. Math. 7(5), 573–598 (1996)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Bradlow, S.B., García-Prada, O., Gothen, P.B.: Deformations of maximal representations in \({{\rm Sp}}(4,{\mathbb{R}})\). Q. J. Math. 63(4), 795–843 (2012)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Collier, B.: \({{\rm SO}}(n, n + 1)\)-surface group representations and Higgs bundles (2017). arXiv:1710.01287

  8. 8.

    Collier, B., Li, Q.: Asymptotics of Higgs bundles in the Hitchin component. Adv. Math. 307, 488–558 (2017)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Collier, B., Tholozan, N., Toulisse, J.: The geometry of maximal representations of surface groups into \({{\rm SO}}(2,n)\) (2017). arXiv:1702.08799

  10. 10.

    Dai, S., Li, Q.: On cyclic Higgs bundles (2017). arXiv:1710.10725

  11. 11.

    Dai, S., Li, Q.: Minimal surfaces for Hitchin representations. J. Differential Geom. 112(1), 47–77 (2019)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Dumas, D., Neitzke, A.: Asymptotics of Hitchin’s metric on the Hitchin section. Commun. Math. Phys. 367(1), 127–150 (2019)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Dumitrescu, O.: A journey from the Hitchin section to the oper moduli. In: Kashani-Poor, A.-K., Minasian, R., Nekrasov, N., Pioline, B. (eds.) String-Math 2016. Proceedings of Symposia in Pure Mathematics, vol. 98, pp. 107–138. American Mathematical Society, Providence (2018)

  14. 14.

    Dumitrescu, O., Fredrickson, L., Kydonakis, G., Mazzeo, R., Mulase, M., Neitzke, A.: Opers versus nonabelian Hodge (2016). arXiv:1607.02172

  15. 15.

    Fredrickson, L.: Exponential decay for the asymptotic geometry of the Hitchin metric (2018). arXiv:1810.01554

  16. 16.

    Gaiotto, D., Moore, G.W., Neitzke, A.: Wall-crossing, Hitchin systems, and the WKB approximation. Adv. Math. 234, 239–403 (2013)

    MathSciNet  Article  Google Scholar 

  17. 17.

    García-Prada, O., Heinloth, J., Schmitt, A.: On the motives of moduli of chains and Higgs bundles. J. Eur. Math. Soc. (JEMS) 16(12), 2617–2668 (2014)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Gothen, P.B.: The Betti numbers of the moduli space of stable rank \(3\) Higgs bundles on a Riemann surface. Int. J. Math. 5(6), 861–875 (1994)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Gothen, P.B.: The Topology of Higgs Bundle Moduli Spaces. Ph.D. Thesis, University of Warwick (1995)

  20. 20.

    Hitchin, N.J.: The self-duality equations on a Riemann surface. Proc. London Math. Soc. 55(1), 59–126 (1987)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Katzarkov, L., Noll, A., Pandit, P., Simpson, C.: Harmonic maps to buildings and singular perturbation theory. Commun. Math. Phys. 336(2), 853–903 (2015)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Labourie, F.: Anosov flows, surface groups and curves in projective space. Invent. Math. 165(1), 51–114 (2006)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Labourie, F.: Cyclic surfaces and Hitchin components in rank 2. Ann. Math. 185(1), 1–58 (2017)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Loftin, J.: Flat metrics, cubic differentials and limits of projective holonomies. Geom. Dedicata 128, 97–106 (2007)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Mazzeo, R., Swoboda, J., Weiß, H., Witt, F.: Limiting configurations for solutions of Hitchin’s equation. In: Actes de Séminaire de Théorie Spectrale et Géométrie. Année 2012–2014, pp. 91–116. St. Martin d’Hères: Université de Grenoble I, Institut Fourier, Grenoble (2014)

  26. 26.

    Mazzeo, R., Swoboda, J., Weiss, H., Witt, F.: Ends of the moduli space of Higgs bundles. Duke Math. J. 165(12), 2227–2271 (2016)

    MathSciNet  Article  Google Scholar 

  27. 27.

    Mochizuki, T.: Asymptotic behaviour of certain families of harmonic bundles on Riemann surfaces. J. Topol. 9(4), 1021–1073 (2016)

    MathSciNet  Article  Google Scholar 

  28. 28.

    Mozgovoy, S.: Higgs bundles over \({\mathbb{P}}^1\) and quiver representations (2016). arXiv:1611.08515

  29. 29.

    Rayan, S.: Geometry of co-Higgs bundles. Ph.D. Thesis, University of Oxford (2011)

  30. 30.

    Rayan, S.: Constructing co-Higgs bundles on \({\mathbb{C}}{\mathbb{P}}^2\). Q. J. Math. 65(4), 1437–1460 (2014)

    MathSciNet  Article  Google Scholar 

  31. 31.

    Rayan, S., Sundbo, E.: Twisted argyle quivers and Higgs bundles. Bull. Sci. Math. 146, 1–32 (2018)

    MathSciNet  Article  Google Scholar 

  32. 32.

    Ross, J., Thomas, R.: Weighted projective embeddings, stability of orbifolds, and constant scalar curvature Kähler metrics. J. Differential Geom. 88(1), 109–159 (2011)

    MathSciNet  Article  Google Scholar 

Download references


We thank Peter Gothen and Qiongling Li for useful discussions. We also thank the anonymous referee for helpful clarifications and corrections on a prior version of this manuscript.

Author information



Corresponding author

Correspondence to Steven Rayan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first named author was supported during this work by an NSERC Discovery Grant. The second named author was supported by an NSERC Alexander Graham Bell Scholarship. We thank the GEAR Network (NSF Grants DMS 1107452, 1107263, 1107367 RNMS: Geometric Structures and Representation Varieties) for supporting the workshop “Geometry and Physics of Gauge Theories at Infinity” (August 2018) co-organized by the first author, where formative steps in this work were taken. Parts of this work were completed during the Mathematisches Forschungsinstitut Oberwolfach Workshop “Geometry and Physics of Higgs Bundles” and during the “Geometry and Physics of Hitchin Systems” Thematic Program at the Simons Center for Geometry and Physics (both in May 2019). The first named author thanks the organizers of the former and both authors thank the organizers of the latter.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rayan, S., Sundbo, E. Twisted cyclic quiver varieties on curves. European Journal of Mathematics 7, 205–225 (2021).

Download citation


  • Cyclic Higgs bundle
  • Twisted Higgs bundle
  • Twisted quiver variety
  • Hitchin section
  • Moduli space
  • Stability

Mathematics Subject Classification

  • 14D20
  • 14H60
  • 16G20