Maximal rank of space curves in the range A

  • Edoardo Ballico
  • Philippe Ellia
  • Claudio Fontanari
Research Article


We prove the following statement, which has been conjectured since 1985: There exists a constant K such that for all natural numbers dg with \(g\leqslant Kd^{3/2}\) there exists an irreducible component of the Hilbert scheme of \(\mathbb {P}^3\) whose general element is a smooth, connected curve of degree d and genus g of maximal rank.


Space curve Postulation Hilbert function Hilbert scheme 

Mathematics Subject Classification

14H50 14N05 



We thank the anonymous referee for useful comments.


  1. 1.
    Ballico, E., Ellia, Ph.: The maximal rank conjecture for nonspecial curves in \(\mathbb{P}^3\). Invent. Math. 79(3), 541–555 (1985)Google Scholar
  2. 2.
    Ballico, E., Ellia, Ph.: Beyond the maximal rank conjecture for curves in \(\mathbb{P}^3\). In: Dold, A., Eckmann, B. (eds.) Space Curves. Lecture Notes in Mathematics, vol. 1266, pp. 1–23. Springer, Berlin (1987)Google Scholar
  3. 3.
    Ballico, E., Ellia, Ph.: A program for space curves. In: Conference on Algebraic Varieties of Small Dimension. Rend. Sem. Mat. Univ. Politec. Torino 1986, Special Issue, 25–42 (1987)Google Scholar
  4. 4.
    Ballico, E., Bolondi, G., Ellia, Ph., Mirò-Roig, R.M.: Curves of maximum genus in range A and stick-figures. Trans. Amer. Math. Soc. 349(11), 4589–4608 (1997)Google Scholar
  5. 5.
    Carlini, E., Catalisano, M.V., Geramita, A.V.: Bipolynomial Hilbert functions. J. Algebra 324(4), 758–781 (2010)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Dasaratha, K.: The Reducibility and Dimension of Hilbert Schemes of Complex Projective Curves. Undergraduate Thesis, Harvard University (2013).
  7. 7.
    Ein, L.: Hilbert scheme of smooth space curves. Ann. Sci. École Norm. Sup. 19(4), 469–478 (1986)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Ein, L.: The irreducibility of the Hilbert scheme of smooth space curves. In: Bloch, S.J. (ed.) Algebraic Geometry, Bowdoin, 1985. Proceedings of Symposia in Pure Mathematics, vol. 46(1), pp. 83–87. American Mathematical Society, Providence (1987)Google Scholar
  9. 9.
    Eisenbud, D., Van de Ven, A.: On the normal bundle of smooth rational space curves. Math. Ann. 256(4), 453–463 (1981)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Ellia, Ph.: Exemples de courbes de \(\mathbb{P}^3\) à fibré normal semi-stable, stable. Math. Ann. 264(3), 389–396 (1983)Google Scholar
  11. 11.
    Ellia, Ph.: Sur le genre maximal des courbes gauches de degré \(d\) non sur une surface de degré \(s-1\). J. Reine Angew. Math. 413, 78–87 (1991)Google Scholar
  12. 12.
    Ellingsrud, G., Hirschowitz, A.: Sur le fibré normal des courbes gauches. C. R. Acad. Sci. Paris Sér. I Math. 299(7), 245–248 (1984)MathSciNetMATHGoogle Scholar
  13. 13.
    Fløystad, G.: Construction of space curves with good properties. Math. Ann. 289(1), 33–54 (1991)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Fløystad, G.: On space curves with good cohomological properties. Math. Ann. 291(3), 505–549 (1991)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, vol. 52. Springer, New York (1977)MATHGoogle Scholar
  16. 16.
    Hartshorne, R.: On the classification of algebraic space curves. In: Hirschowitz, A. (ed.) Vector Bundles and Differential Equations. Progress in Mathematics, vol. 7, pp. 83–112. Birkhäuser, Boston (1980)CrossRefGoogle Scholar
  17. 17.
    Hartshorne, R., Hirschowitz, A.: Droites en position générale dans l’espace projectif. In: Aroca, J.M., et al. (eds.) Algebraic Geometry. Lecture Notes in Mathematics, vol. 961, pp. 169–188. Springer, Berlin (1982)Google Scholar
  18. 18.
    Hartshorne, R., Hirschowitz, A.: Smoothing algebraic space curves. In: Casas-Alvero, E., et al. (eds.) Algebraic Geometry. Lecture Notes in Mathematics, vol. 1124, pp. 98–131. Springer, Berlin (1985)Google Scholar
  19. 19.
    Hirschowitz, A.: Sur la postulation générique des courbes rationnelles. Acta Math. 146(3–4), 209–230 (1981)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Hirschowitz, A.: Sections planes et multisécantes pour les courbes gauches génériques principales. In: Dold, A., Eckmann, B. (eds.) Space Curves. Lecture Notes in Mathematics, vol. 1266, pp. 124–155. Springer, Berlin (1987)Google Scholar
  21. 21.
    Iliev, H.: On the irreducibility of the Hilbert scheme of space curves. Proc. Amer. Math. Soc. 134(10), 2823–2832 (2006)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Jensen, D., Payne, S.: Tropical independence II: the maximal rank conjecture for quadrics. Algebra Number Theory 10(8), 1601–1640 (2016)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Keem, C.: Reducible Hilbert scheme of smooth curves with positive Brill–Noether number. Proc. Amer. Math. Soc. 122(2), 349–354 (1994)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Keem, C., Kim, Y.-H.: Irreducibility of the Hilbert scheme of smooth curves in \(\mathbb{P}^3\) of degree \(g\) and genus \(g\). Arch. Math. (Basel) 108(6), 593–600 (2017)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Keem, C., Kim, Y.-H., Lopez, A.F.: Irreducibility and components rigid in moduli of the Hilbert scheme of smooth curves (2016). arXiv:1605.00297
  26. 26.
    Keem, C., Kim, S.: Irreducibility of a subscheme of the Hilbert scheme of complex space curves. J. Algebra 145(1), 240–248 (1992)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Larsen, E.: The maximal rank conjecture (2017). arXiv:1711.04906
  28. 28.
    Le Tat, T.: Space curves with the expected postulation. J. Pure Appl. Algebra 177(3), 253–285 (2003)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Perrin, D.: Courbes passant par \(m\) points généraux de \(\mathbb{P}^3\). Mémoires de la Société Mathématique de France, vol. 28/29. Société Mathématique de France, Paris (1987)Google Scholar
  30. 30.
    Sernesi, E.: On the existence of certain families of curves. Invent. Math. 75(1), 25–57 (1984)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Walter, Ch.W: Curves in \(\mathbb{P}^3\) with the expected monad. J. Algebraic Geom. 4(2), 301–320 (1995)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Edoardo Ballico
    • 1
  • Philippe Ellia
    • 2
  • Claudio Fontanari
    • 1
  1. 1.Dipartimento di MatematicaUniversità di TrentoTrentoItaly
  2. 2.Dipartimento di Matematica e InformaticaUniversità degli Studi di FerraraFerraraItaly

Personalised recommendations