European Journal of Mathematics

, Volume 4, Issue 3, pp 732–760 | Cite as

Stable rationality of quadric and cubic surface bundle fourfolds

  • Asher Auel
  • Christian Böhning
  • Alena Pirutka
Research Article


We study the stable rationality problem for quadric and cubic surface bundles over surfaces from the point of view of the specialization method for the Chow group of 0-cycles. Our main result is that a very general hypersurface X of bidegree (2, 3) in Open image in new window is not stably rational. Via projections onto the two factors, Open image in new window is a cubic surface bundle and Open image in new window is a conic bundle, and we analyze the stable rationality problem from both these points of view. Also, we introduce, for any \(n\geqslant 4\), new quadric surface bundle fourfolds Open image in new window with discriminant curve Open image in new window of degree 2n, such that \(X_n\) has nontrivial unramified Brauer group and admits a universally \(\mathrm {CH}_0\)-trivial resolution.


Stable rationality Brauer group Quadric bundles Cubic surface bundles Fano fourfolds 

Mathematics Subject Classification

14C35 14D06 14E05 14E08 14F22 14J20 14J26 


  1. 1.
    Ahmadinezhad, H., Okada, T.: Stable rationality of higher dimensional conic bundles (2016). arXiv:1612.04206
  2. 2.
    Auel, A., Colliot-Thélène, J.L., Parimala, R.: Universal unramified cohomology of cubic fourfolds containing a plane. In: Auel, A., Hassett, B., Várilly-Alvarado, A., Viray, B. (eds.) Brauer Groups and Obstruction Problems. Progress in Mathematics, vol. 320, pp. 29–56. Birkhäuser, Basel (2017)CrossRefGoogle Scholar
  3. 3.
    Auel, A., Böhning, Chr., Graf von Bothmer, H.-Chr., Pirutka, A.: Conic bundles with nontrivial unramified Brauer group over threefolds (2016). arXiv:1610.04995
  4. 4.
    Beauville, A.: A very general sextic double solid is not stably rational. Bull. London Math. Soc 48(2), 321–324 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Beklemishev, N.D.: Invariants of cubic forms of four variables. Moscow Univ. Math. Bull. 37, 54–62 (1982)zbMATHGoogle Scholar
  6. 6.
    Bloch, S., Ogus, A.: Gersten’s conjecture and the homology of schemes. Ann. Sci. Éc. Norm. Supér. 7, 181–201 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Böhning, Chr., Graf von Bothmer, H.-Chr.: On stable rationality of some conic bundles and moduli spaces of Prym curves. Comment. Math. Helv. 93(1), 133–155 (2018)Google Scholar
  8. 8.
    Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symbolic Comput. 24(3–4), 235–265 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Chatzistamatiou, A., Levine, M.: Torsion orders of complete intersections. Algebra Number Theory 11(8), 1779–1835 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Clebsch, A.: Ueber eine Transformation der homogenen Functionen dritter Ordnung mit vier Veränderlichen. J. Reine Angew. Math. 58, 109–126 (1861)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Clebsch, A.: Zur Theorie der algebraischer Flächen. J. Reine Angew. Math. 58, 93–108 (1861)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Colliot-Thélène, J.-L.: Birational invariants, purity and the Gersten conjecture. In: Jacob, W., Rosenberg, A. (eds.) \(K\)-Theory and Algebraic Geometry. Proceedings of Symposia in Pure Mathematics, vol. 58.1, pp. 1–64. American Mathematical Society, Providence (1995)Google Scholar
  13. 13.
    Colliot-Thélène, J.-L.: Un théorème de finitude pour le groupe de Chow des zéro-cycles d’un groupe algébrique linéaire sur un corps \(p\)-adique. Invent. Math. 159(3), 589–606 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Colliot-Thélène, J.-L., Ojanguren, M.: Variétés unirationnelles non rationnelles: au-delà de l’exemple d’Artin et Mumford. Invent. Math. 97(1), 141–158 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Colliot-Thélène, J.-L., Pirutka, A.: Cyclic covers that are not stably rational. Izv. Math. 80(4), 665–677 (2016) (in Russian)Google Scholar
  16. 16.
    Colliot-Thélène, J.-L., Pirutka, A.: Hypersurfaces quartiques de dimension 3: non-rationalité stable. Ann. Sci. Éc. Norm. Supér. 49(2), 371–397 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Coombes, K.R.: Every rational surface is separably split. Comment. Math. Helv. 63(2), 305–311 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Dolgachev, I.: Lectures on Invariant Theory. London Mathematical Society Lecture Note Series, vol. 296. Cambridge University Press, Cambridge (2003)CrossRefGoogle Scholar
  19. 19.
    Edge, W.L.: The discriminant of a cubic surface. Proc. R. Irish Acad. Sect. A 80(1), 75–78 (1980)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Elsenhans, A.-S., Jahnel, J.: The discriminant of a cubic surface. Geom. Dedicata 159, 29–40 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Gabber, O., Liu, Q., Lorenzini, D.: The index of an algebraic variety. Invent. Math. 192(3), 567–626 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Goursat, É.: Étude des surfaces qui admettent tous les plans de symétrie d’un polyèdre régulier. Ann. Sci. Éc. Norm. Supér. 4, 159–200 (1887)CrossRefzbMATHGoogle Scholar
  23. 23.
    Hassett, B., Kresch, A., Tschinkel, Yu.: Stable rationality and conic bundles. Math. Ann. 365(3–4), 1201–1217 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Hassett, B., Pirutka, A., Tschinkel, Yu.: Stable rationality of quadric surface bundles over surfaces (2016). arXiv:1603.09262
  25. 25.
    Hassett, B., Pirutka, A., Tschinkel, Yu.: A very general quartic double fourfold is not stably rational (2016). arXiv:1605.03220
  26. 26.
    Hassett, B., Pirutka, A., Tschinkel, Yu.: Intersections of three quadrics in \(\mathbb{P}^7\) (2017). arXiv:1706.01371
  27. 27.
    Hassett, B., Tschinkel, Yu.: On stable rationality of Fano threefolds and del Pezzo fibrations. J. Reine Angew. Math.
  28. 28.
    Kollár, J.: Nonrational hypersurfaces. J. Amer. Math. Soc. 8(1), 241–249 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Krylov, I., Okada, T.: Stable rationality of del Pezzo fibrations of low degree over projective spaces (2017). arXiv:1701.08372
  30. 30.
    Liu, Q.: Algebraic Geometry and Arithmetic Curves. Oxford Graduate Texts in Mathematics, vol. 6. Oxford University Press, Oxford (2002). Translated from the French by Reinie ErnéGoogle Scholar
  31. 31.
    Okada, T.: Stable rationality of cyclic covers of projective spaces (2016). arXiv:1604.08417
  32. 32.
    Okada, T.: Smooth weighted hypersurfaces that are not stably rational (2017). arXiv:1709.07748
  33. 33.
    Okada, T.: Stable rationality of index one Fano hypersurfaces containing a linear space (2017). arXiv:1709.07757
  34. 34.
    Pirutka, A.: Varieties that are not stably rational, zero-cycles and unramified cohomology (2016). arXiv:1603.09261
  35. 35.
    Salmon, G.: On quaternary cubics. Philos. Trans. R. Soc. Lond. 150, 229–239 (1860)CrossRefGoogle Scholar
  36. 36.
    Schreieder, S.: Quadric surface bundles over surfaces and stable rationality (2017). arXiv:1706.01358 (to appear in Algebra Number Theory)
  37. 37.
    Schreieder, S.: On the rationality problem for quadric bundles (2017). arXiv:1706.01356
  38. 38.
    Sir Swinnerton-Dyer, P.: The Brauer group of cubic surfaces. Math. Proc. Cambridge Philos. Soc. 113(3), 449–460 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Totaro, B.: Hypersurfaces that are not stably rational. J. Amer. Math. Soc. 29(3), 883–891 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Voisin, C.: Unirational threefolds with no universal codimension \(2\) cycle. Invent. Math. 201(1), 207–237 (2015)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Asher Auel
    • 1
  • Christian Böhning
    • 2
  • Alena Pirutka
    • 3
    • 4
  1. 1.Department of MathematicsYale UniversityNew HavenUSA
  2. 2.Mathematics InstituteUniversity of WarwickCoventryUK
  3. 3.Courant Institute of Mathematical SciencesNew York UniversityNew YorkUSA
  4. 4.National Research University Higher School of EconomicsMoscowRussian Federation

Personalised recommendations