Advertisement

Wavelet frames related to Walsh functions

  • Yuri A. Farkov
Research Article
  • 10 Downloads

Abstract

We describe three types of compactly supported wavelet frames associated with Walsh functions: (1) MRA-based tight frames, (2) frames obtained from the Daubechies-type “admissible condition”, and (3) frames based on the Walsh–Parseval type kernels. Parametric wavelet sets for Vilenkin groups and some related results are also discussed.

Keywords

Wavelets Frames Walsh functions Vilenkin groups 

References

  1. 1.
    Agaev, G.H., Vilenkin, N.Ya., Dzhafarli, G.M., Rubinstein, A.I.: Multiplicative Systems of Functions and Harmonic Analysis on Zero-Dimensional Groups. ELM, Baku (1981) (in Russian)Google Scholar
  2. 2.
    Daubechies, I.: Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61. SIAM, Philadelphia (1992)Google Scholar
  3. 3.
    Dong, D., Shen, Z.: MRA-based wavelet frames and applications. In: Zhao, H. (ed.) Mathematics in Image Processing. IAS/Park City Mathematics Series, vol. 19, pp. 5–156. American Mathematical Society, Providence (2013)Google Scholar
  4. 4.
    Farkov, Yu.A.: Orthogonal wavelets with compact support on locally compact abelian groups. Izv. Math. 69(3), 623–650 (2005)Google Scholar
  5. 5.
    Farkov, Yu.A.: Orthogonal wavelets on direct products of cyclic groups. Math. Notes 82(5–6), 843–859 (2007)Google Scholar
  6. 6.
    Farkov, Yu.A.: Multiresolution analysis and wavelets on Vilenkin groups. Facta Univ. (Niš) Ser. Electron. Energy 21(3), 309–325 (2008)Google Scholar
  7. 7.
    Farkov, Yu.A.: On wavelets related to the Walsh series. J. Approx. Theory 161(1), 259–279 (2009)Google Scholar
  8. 8.
    Farkov, Yu.A.: Examples of frames on the Cantor dyadic group. J. Math. Sci. (N. Y.) 187(1), 22–34 (2012)Google Scholar
  9. 9.
    Farkov, Yu.A.: Periodic wavelets in Walsh analysis. Commun. Math. Appl. 3(3), 223–242 (2012)Google Scholar
  10. 10.
    Farkov, Yu.A.: Constructions of MRA-based wavelets and frames in Walsh analysis. Poincare J. Anal. Appl. 2015(2), 13–36 (2015)Google Scholar
  11. 11.
    Farkov, Yu.A.: Orthogonal wavelets in Walsh analysis. In: Lukashenko, T.P., Solodov, A.P. (eds.) Generalized Integrals and Harmonic Analysis. Contemporary Problems of Mathematics and Mechanics, vol. 11, pp. 62–75. Moscow State University, Moscow (2016) (in Russian)Google Scholar
  12. 12.
    Farkov, Yu.A.: Nonstationary multiresolution analysis for Vilenkin groups. In: 2017 International Conference on Sampling Theory and Applications (SampTA, Tallinn, Estonia, 3–7 July 2017), pp. 595–598Google Scholar
  13. 13.
    Farkov, Yu.A., Lebedeva, E., Skopina, M.: Wavelet frames on Vilenkin groups and their approximation properties. Int. J. Wavelets Multiresolut. Inf. Process. 13(5), 1550036 (2015)Google Scholar
  14. 14.
    Farkov, Yu.A., Rodionov, E.A.: Algorithms for wavelet construction on Vilenkin groups. \(p\)-Adic Numbers Ultrametric Anal. Appl. 3(3), 181–195 (2011)Google Scholar
  15. 15.
    Farkov, Yu.A., Rodionov, E.A.: On biorthogonal discrete wavelet bases. Int. J. Wavelets Multiresolut. Inf. Process. 13(1), 1550002 (2015)Google Scholar
  16. 16.
    Fine, N.J.: On the Walsh functions. Trans. Amer. Math. Soc. 65(3), 372–414 (1949)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Golubov, B., Efimov, A., Skvortsov, V.: Walsh Series and Transforms. Mathematics and Its Applications (Soviet Series), vol. 64. Kluwer, Dordrecht (1991)CrossRefzbMATHGoogle Scholar
  18. 18.
    Han, D., Kornelson, K., Larson, D., Weber, E.: Frames for Undergraduates. Student Mathematical Library, vol. 40. American Mathematical Society, Providence (2007)zbMATHGoogle Scholar
  19. 19.
    Hernández, E., Wess, G.: A First Course on Wavelets. CRC Press, Boca Raton (1996)CrossRefGoogle Scholar
  20. 20.
    Krivoshein, A., Protasov, V., Skopina, M.: Multivariate Wavelet Frames. Industrial and Applied Mathematics. Springer, Singapore (2016)zbMATHGoogle Scholar
  21. 21.
    Lang, W.C.: Orthogonal wavelets on the Cantor dyadic group. SIAM J. Math. Anal. 27(1), 305–312 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Lang, W.C.: Wavelet analysis on the Cantor dyadic group. Houston J. Math. 24(3), 533–544 (1998)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Lukomskii, S.F., Berdnikov, G.S.: \(N\)-valid trees in wavelet theory on Vilenkin groups. Int. J. Wavelets Multiresolut. Inf. Process. 13(5), 1550037 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Mansour, M.F.: Subspace design of compactly supported orthonormal wavelets. J. Fourier Anal. Appl. 20(1), 66–90 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Protasov, V.Yu., Farkov, Yu.A.: Dyadic wavelets and refinable functions on a half-line. Sb. Math. 197(9–10), 1529–1558 (2006)Google Scholar
  26. 26.
    Rodionov, E.A.: On applications of wavelets in digital signal processing. Izv. Saratov Univ. (N.S.), Ser. Math. Mech Inform. 16(2), 217–225 (2016) (in Russian)Google Scholar
  27. 27.
    Ron, A., Shen, Z.: Compactly supported tight affine spline frames in \(L_2(\mathbb{R}^d)\). Math. Comput. 67(221), 191–207 (1998)CrossRefzbMATHGoogle Scholar
  28. 28.
    Schipp, F., Wade, W.R., Simon, P.: Walsh Series. Adam Hilger, Bristol (1990)zbMATHGoogle Scholar
  29. 29.
    Vilenkin, N.Ya.: On a class of complete orthonormal systems. Amer. Math. Soc. Transl. 28, 1–35 (1963)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Applied Information TechnologyRussian Presidential Academy of National Economy and Public Administration (RANEPA)MoscowRussia

Personalised recommendations