The Shock Induced Mechanical Response of the Fluorinated Tri-polymer, Viton B

Abstract

The response of Viton B, a fluorinated tripolymer, to one dimensional shock loading has been investigated using manganin stress gauges as the diagnostic. These have been mounted such that they are sensitive to both the longitudinal and lateral components of stress. In the case of the longitudinal gauges, mounting at multiple locations within the target assembly also allows measurement of shock and release velocities as well. Results show that in terms of shock velocity and stress and shear strength, results from Viton B lie a little higher than the corresponding results for polytetrafluoroethylene (PTFE), but more similar to those of polyvinylidene difluoride (PVDF). However, in terms of the release velocity, the behaviour of Viton B is more akin to PTFE. We believe that there are two competing mechanisms at play; an electrostatic repulsion between chains due to the presence of electronegative fluorine atoms that acts against interchain interactions (hence the low shock and high release velocities) and interchain entanglement (tacticity) due to the presence of trifluoromethyl side groups on one of the monomer sub units. This will result in a greater shock velocity and increase in shear strength behind the shock front (when compared to PTFE) as adjacent polymer chains physically interact via entanglement. This should reduce the release velocity for similar reasons; however the release behaviour of Viton B and PTFE is similar. We thus suggest that the electrostatic repulsion between chains may be acting over a longer length scale than interchain entanglement.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Boteler JM, Lindfors AJ (1996) Shock loading studies of AP/Al/HTPB based propellants. In: Schmidt SC, Tao WC (eds) Shock compression of condensed matter 1995. American Institute of Physics, Woodbury, New York, pp 767–770

    Google Scholar 

  2. 2.

    Bourne NK, Gray GT III (2005) Dynamic response of binders: Teflon, EstaneTM and Kel-F-800TM. J Appl Phys 98:123503

    Article  CAS  Google Scholar 

  3. 3.

    Jordan JL, Montaigne D, Gould P, Neel C, Sunny G, Molek C (2016) High strain rate and shock properties of hydroxyl-terminated polybutadiene (HTPB) with varying amounts of plasticizer. J Dyn Behav Mater 2:91–100

    Article  Google Scholar 

  4. 4.

    Zaretsky E, deBotton G, Perl M (2004) The response of a glass fibers reinforced epoxy composite to an impact loading. Int J Solids Struct 41:569–584

    Article  Google Scholar 

  5. 5.

    Wood DC, Hazell PJ, Appleby-Thomas GJ, Barnes NR (2011) Shock behaviour of a phenolic resin. J Mater Sci 46:5991–5999

    CAS  Article  Google Scholar 

  6. 6.

    Marsh SP (1980) LASL Shock Hugoniot data. University of California Press, Los Angeles

    Google Scholar 

  7. 7.

    Carter WJ, Marsh SP (1995) Hugoniot equation of state of polymers. Los Alamos National Laboratory, Report No. LA-12006-MS, Los Alamos, NM, USA

  8. 8.

    Millett JCF, Bourne NK (2004) The equation of state of three simple polymers. J Phys D 37:2901–2907

    CAS  Article  Google Scholar 

  9. 9.

    Millett JCF, Bourne NK, Gray GT III (2004) The response of polyether ether ketone to one-dimensional shock loading. J Phys D 37:942–947

    CAS  Article  Google Scholar 

  10. 10.

    Millett JCF, Bourne NK, Barnes NR (2002) The behaviour of an epoxy resin under one-dimensional shock loading. J Appl Phys 92:6590–6594

    CAS  Article  Google Scholar 

  11. 11.

    Millett JCF, Bourne NK, Akhavan J (2004) The response of hydroxy-terminated polybutadiene to one-dimensional shock loading. J Appl Phys 95:4722–4727

    CAS  Article  Google Scholar 

  12. 12.

    Bourne NK (2016) On the shock response of polymers to extreme loading. J Dyn Behav Mater 2:33–42

    Article  Google Scholar 

  13. 13.

    Barker LM, Hollenbach RE (1970) Shock-wave studies of PMMA, fused silica, and sapphire. J Appl Phys 41:4208–4226

    CAS  Article  Google Scholar 

  14. 14.

    Millett JCF, Bourne NK (2006) The shock induced equation of state and shear strength of polyvinylidene difluoride. J Phys IV 134:719–724

    CAS  Google Scholar 

  15. 15.

    Bourne NK, Millett JCF, Brown EN, Gray GT III (2007) Effect of halogenation on the shock properties of semicrystalline thermoplastics. J Appl Phys 102:063510

    Article  CAS  Google Scholar 

  16. 16.

    Bourne NK, Milne AM (2004) Shock to detonation transition in a plastic bonded explosive. J Appl Phys 95:2379–2385

    CAS  Article  Google Scholar 

  17. 17.

    Coe JD, Brown EN, Cady CM, Carlson CA, Clements BE, Dattelbaum DM, Fezzaa K, Gustavsen RL, Hooks DE, Iverson AJ, Jensen BJ, Jordan JL, Jones DR, Junghans SA, Lang JL, LeBrun TJ, Lewis MW, Maerzke KA, Pierce TH, Ramos KJ, Rigg P, Schilling BF, Sinclair N, Stull JA, Watkins EB, Welch CF, WelchPM (2017) Equation of state and damage in polyethylene. Los Alamos National Laboratory, Los Alamos, NM. Report No. LA-UR-17-29234

  18. 18.

    Dattelbaum DM, Coe JD (2019) Shock-driven decomposition of polymers and polymeric foams. Polymers 11:493

    Article  CAS  Google Scholar 

  19. 19.

    Maerzke KA, Coe JD, Ticknor C, Leiding JA, Gammel JT, Welch CF (2019) Equations of state for polyethylene and its shock-driven decomposition products. J Appl Phys 126:045902

    Article  CAS  Google Scholar 

  20. 20.

    Bourne NK, Millett JCF (2008) Tacticity in shocked polymer hydrocarbons. J Mater Sci 43:185–189

    CAS  Article  Google Scholar 

  21. 21.

    Champion AR (1971) Shock compression of teflon from 2.5 to 25 kbar—evidence for a shock induced transition. J Appl Phys 42:5546–5550

    CAS  Article  Google Scholar 

  22. 22.

    Rae PJ, Brown EN, Clements BE, Dattelbaum DM (2005) Pressure-induced phase change in poly(tetrafluoroethylene) at modest impact velocities. J Appl Phys 98:063521

    Article  CAS  Google Scholar 

  23. 23.

    Rae PJ, Dattelbaum DM (2004) The properties of poly(tetrafluoroethylene) (PTFE) in compression. Polymer 45:7615–7625

    CAS  Article  Google Scholar 

  24. 24.

    Rae PJ, Gray GT, Dattelbaum DM, Boune NK (2004) The Taylor impact response of PTFE (Teflon). In: Furnish MD (ed) Shock compression of condensed matter—2003. Melville, NY, pp 671–674

    Google Scholar 

  25. 25.

    Brown EN, Trujillo CP, Gray GT III, Rae PJ, Bourne NK (2007) Soft recovery of polytetrafluoroethylene shocked through the crystalline phase II–III transition. J Appl Phys 101:024916

    Article  CAS  Google Scholar 

  26. 26.

    Bourne NK, Brown EN, Millett JCF, Gray GT III (2008) Shock, release and Taylor impact of the semicrystalline thermoplastic polytetrafluoroethylene. J Appl Phys 103:074902

    Article  CAS  Google Scholar 

  27. 27.

    Resnyansky AD, Bourne NK, Brown EN, Millett JCF, Rae PJ, McDonald SA, Withers PJ (2014) Phase transition modeling of polytetrafluoroethylene during Taylor impact. J Appl Phys 116:223502

    Article  CAS  Google Scholar 

  28. 28.

    Resnyansky AD, Bourne NK, Millett JCF, Brown EN (2011) Constitutive modeling of shock response of polytetrafluoroethylene. J Appl Phys 110:033530

    Article  CAS  Google Scholar 

  29. 29.

    Bourne NK, Garcea SC, Eastwood DS, Parry S, Rau C, Withers PJ, McDonald SA, Brown EN (2017) On compression and damage evolution in two thermoplastics. Proc R Soc A 473:20160495

    CAS  Article  Google Scholar 

  30. 30.

    Millett JCF, Brown EN, Gray GT III, Bourne NK, Wood DC, Appleby-Thomas G (2016) The effects of changing chemistry on the shock response of basic polymers. J Dyn Behav Mater 2:326–336

    Article  Google Scholar 

  31. 31.

    Millett JCF, Lowe MR, Appleby-Thomas G, Roberts A (2016) The mechanical and optical response of polychlorotrifluoroethylene to one-dimensional shock loading. Met Mat Trans A 47A:697–705

    Article  CAS  Google Scholar 

  32. 32.

    Agu HO, Hameed A, Appleby-Thomas GJ, Wood DC (2019) The dynamic response of dense 3 dimensionally printed polylactic acid. J Dyn Behav Mater 5:377–386

    Article  Google Scholar 

  33. 33.

    Bauer F (2000) PVDF shock sensors: applications to polar materials and high explosives. IEEE Trans Ultrson Ferroelectr Freq Control 47:1448–1454

    CAS  Article  Google Scholar 

  34. 34.

    Graham RA (1988) Response of Bauer piezoelectric polymer stress gauges (PVDF) to shock loading. In: Schmidt SC, Holmes NC (eds) Shock waves in condensed matter—1987. Elsevier Science Publishers B.V., New York, pp 619–622

    Google Scholar 

  35. 35.

    Millett JCF, Taylor P, Roberts A, Appleby-Thomas G (2017) The strength of two HMX based plastic bonded explosives during one-dimensional shock loading. J Dyn Behav Mater 3:100–109

    Article  Google Scholar 

  36. 36.

    Eby RK, Wilson FC (1962) Relaxations in copolymers of tetrafluoroethylene and hexafluoropropylene. J Appl Phys 33:2951–2955

    CAS  Article  Google Scholar 

  37. 37.

    Millett JCF, Bourne NK, Gray GT III (2004) The shock induced equation of state of a fluorinated trimer. J Appl Phys 96:5500–5504

    CAS  Article  Google Scholar 

  38. 38.

    Dattelbaum DM, Sheffield SA, Stahl D, Weinberg M, Neel C, Thadhani N (2008) Equation of state and high pressure properties of a fluorinated terpolymer: THV 500. J Appl Phys 104:113525

    Article  CAS  Google Scholar 

  39. 39.

    Greeff CW (2012) SESAME equation of state for Viton B. Los Alamos National Laboratory, Los Alamos, NM. Report No. LA-UR-12-24741, Los Alamos, NM, USA

  40. 40.

    Root S, Furnish MD, Specht PE (2016) Update on energetic material studies. Sandia National Laboratory Albuquerque, NM. Report No. SAND2016-12213PE 649624

  41. 41.

    Neel C, Chhabildas L (2015) The Hugoniot and strength of Ultem 1000 polyetherimide. J Dyn Behav Mater 1:225–236

    Article  Google Scholar 

  42. 42.

    Hsu YH, Mark JE (1987) Effects of strain induced crystallization on the elastic and thermoelastic properties of some fluoroelastomers. Polym Eng Sci 27:1203–1208

    CAS  Article  Google Scholar 

  43. 43.

    Brown EN, Rae PJ, Trujillo CP, Dattelbaum DM, Gray GT III, Bourne NK (2006) The Taylor impact and high strain-rate response of poly(chlorotrifluoroethylene) PCTFE, poly(ether-etherketone) PEEK and Kel-F 800. In: Furnish MD (ed) Shock compression of condensed matter—2005. AIP Press, Melville, NY, pp 196–199

    Google Scholar 

  44. 44.

    Brown EN, Rae PJ, Gray GT III (2006) The influence of temperature and strain rate on the tensile and compressive constitutive response of four fluoropolymers. J Phys IV 134:935–940

    CAS  Google Scholar 

  45. 45.

    Rosenberg Z, Yaziv D, Partom Y (1980) Calibration of foil-like manganin gauges in planar shock wave experiments. J Appl Phys 51:3702–3705

    CAS  Article  Google Scholar 

  46. 46.

    Winter RE, Harris EJ (2008) Simulations of the embedded lateral stress gauge profiles in shocked targets. J Phys D 41:035503

    Article  CAS  Google Scholar 

  47. 47.

    Bourne N, Millett J, Rosenberg Z, Murray N (1998) On the shock induced failure of brittle solids. J Mech Phys Solids 46:1887–1908

    CAS  Article  Google Scholar 

  48. 48.

    Petel OE, Higgins J (2010) Shock wave propagation in dense particle suspensions. J Appl Phys 108:114918

    Article  CAS  Google Scholar 

  49. 49.

    Jordan JL, Casem DT (2020) Understanding calibration and error propagation in longitudinal and lateral manganin gauge shock experiment. J Dyn Behav Mater. https://doi.org/10.1007/s40870-020-00255-7

    Article  Google Scholar 

  50. 50.

    Rosenberg Z, Bourne NK, Millett JCF (2007) On the effect of manganin geometries upon their response to lateral stress. Meas Sci Technol 18:1843–1847

    CAS  Article  Google Scholar 

  51. 51.

    Meyers MA (1994) Dynamic behavior of materials. Wiley-Interscience, New York

    Google Scholar 

  52. 52.

    Bourne NK, Gray GT III (2003) Equation of state of polytetrafluroethylene. J Appl Phys 93:8966–8969

    CAS  Article  Google Scholar 

  53. 53.

    Robbins DL, Sheffield SA, Alcon RR (2004) Magnetic particle velocity measurments of shocked Teflon. In: Furnish MD, Gupta YM, Forbes JW (eds) Shock compression of condensed matter—2003. American Institute of Physics, Melville, NY, pp 675–678

    Google Scholar 

  54. 54.

    Millett JCF, Bourne NK (2000) The deviatoric response of polymethylmethacrylate to one-dimensional shock loading. J Appl Phys 88:7037–7040

    CAS  Article  Google Scholar 

Download references

Acknowledgements

UK Ministry of Defence© Crown Owned Copyright 2020/AWE. Published with permission of the Controller of Her Britannic Majesty’s Stationery Office. “This document is of United Kingdom origin and contains proprietary information which is the property of the Secretary of State for Defence. It is furnished in confidence and may not be copied, used or disclosed in whole or in part without prior written consent of Defence Intellectual Property Rights DGDCDIPR-PL—Ministry of Defence, Abbey Wood, Bristol, BS34 8JH, England.”

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. C. F. Millett.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Millett, J.C.F., Brown, E.N., Bourne, N.K. et al. The Shock Induced Mechanical Response of the Fluorinated Tri-polymer, Viton B. J. dynamic behavior mater. (2021). https://doi.org/10.1007/s40870-021-00289-5

Download citation

Keywords

  • Viton B
  • Impact
  • Lateral stress
  • Shear strength
  • Wave propagation