Skip to main content
Log in

Experiments and Constitutive Modelling of Sand Ejecta Impact

  • Published:
Journal of Dynamic Behavior of Materials Aims and scope Submit manuscript

Abstract

Analysis of the dynamic response of geological porous materials under shock and explosive loading is an important problem in numerous mining and military applications. The experimental characterisation of porous materials with planar shock impact and split Hopkinson pressure bar (SHPB) tests is well developed. However, progress in the test methodology and validation of advanced models is not yet adequate for the complexity of the materials. The present work suggests an experimental set-up aimed at the dynamic observation of momentum transfer from the plume of a porous material ejected by a high explosive (HE) charge. The momentum transfer provides data for model validation and is assessed from the target plate deformation due to impact by the ejecta from a HE charge buried under a layer of a porous material. The porous material used in the paper is represented by calcite sand. An earlier developed two-phase material model for porous materials implemented in the CTH hydrocode is employed for simulating the dynamic behaviour of the calcite sand. The validation experiments are complemented by tailored characterisation experiments for populating parameters within the model which describe (i) the plasticity and compaction behaviour of the sand; and (ii) a kinetic governing shock consolidation transformations within the sand. This includes an analysis of confined SHPB tests and the response of encapsulated sand loaded by HE products in two separate series of tests. The two-phase material model is validated for the calcite sand and comparison with the experimental data demonstrates a good description of the material behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Zeldovich YB, Raiser YP (1967) Physics of shock waves and high temperature hydrodynamic phenomena. Academic Press, New York

    Book  Google Scholar 

  2. Barnes JF, Lyon SP (1987) SESAME equation of state number 7100, dry sand. Report LA-11104-MS. Los Alamos National Lab., Santa Fe

    Book  Google Scholar 

  3. Grady D (2004) Analytical solutions and constitutive relations for shock propagation in porous media. In: Furnish MD et al (ed) Shock compression of condensed matter-2003. American Institute of Physics, Melville, pp 205–208

    Google Scholar 

  4. Resnyansky AD (2010) Constitutive modeling of shock response of phase-transforming and porous materials with strength. J Appl Phys 108:083534

    Article  Google Scholar 

  5. Fourney WL, Leiste U, Bonenberger R, Goodings D (2005) Explosive impulse on plates. Fragblast 9(1):1–17

    Article  Google Scholar 

  6. Anderson CE Jr, Behner T, Weiss CE (2011) Mine blast loading experiments. Int J Impact Eng 38:697–706

    Article  Google Scholar 

  7. Bergeron DM, Tremblay JE (2000) Canadian research to characterise mine blast output. In: 16th international MABS symposium, Oxford, p 5

  8. Taylor LC, Skaggs RR, Gault W (2005) Vertical impulse measurement of mines buried in saturated sand. Fragblast 9(1):19–28

    Article  Google Scholar 

  9. Newell N, Neal W, Pandelani T, Reinecke D, Proud WG, Masouros SD (2016) The dynamic behaviour of the floor of a surrogate vehicle under explosive blast loading. J Mater Sci Res 5(2):65–73

    Article  Google Scholar 

  10. Pickering EG, Yuen SCK, Nurick GN, Haw P (2012) The response of quadrangular plates to buried charges. Int J Impact Eng 49(11):103–114

    Article  Google Scholar 

  11. Pickering EG, Yuen SCK, Nurick GN (2013) The influence of the height of burial of buried charges—some experimental observations. Int J Impact Eng 58:76–83

    Article  Google Scholar 

  12. Neubergera A, Peles S, Rittel D (2007) Scaling the response of circular plates subjected to large and close-range spherical explosions. Part II: buried charges. Int J Impact Eng 34(5):874–882

    Article  Google Scholar 

  13. Denefeld V, Heider N, Holzwarth A (2017) Measurement of the spatial specific impulse distribution due to buried high explosive charge detonation. Def Technol 13:219–227

    Article  Google Scholar 

  14. Bergeron D, Walker R, Coffey C (1998) Detonation of 100-gram anti-personnel mine surrogate charges in sand—a test case for computer code validation. Report DRES-668. Defence Research Establishment Suffield, Ralston

    Google Scholar 

  15. Hansen C, Pak RYS (2016) Centrifuge characterization of buried, explosive-induced soil ejecta kinematics and crater morphology. J Dyn Behav Mater 2(3):306–325

    Article  Google Scholar 

  16. Resnyansky AD (2012) CTH Implementation of a two-phase material model with strength: application to porous materials. Report DSTO-TR-2728. Defence Science and Technology Organisation, Edinburgh

    Google Scholar 

  17. Simakov GV, Trunin RF (1990) Shockwave compression of ultraporous silica. Izv Earth Phys 26(11):952–956

    Google Scholar 

  18. Resnyansky AD (2008) Constitutive modelling of Hugoniot for a highly porous material. J Appl Phys 104(9):093511

    Article  Google Scholar 

  19. Resnyansky AD (2016) Two-zone Hugoniot for porous materials. Phys Rev B 93(5):054103

    Article  Google Scholar 

  20. Resnyansky AD (2018) Porous materials under shock loading as a two-phase mixture: the effect of the interstitial air. ASME J Fluids Eng 140:050903

    Article  Google Scholar 

  21. Meyers MA, Benson DJ, Olevsky EA (1999) Shock consolidation: microstructurally-based analysis and computational modelling. Acta Mater 47(7):2089–2108

    Article  Google Scholar 

  22. Schwarz RB, Kasiraj P, Vreeland T Jr, Ahrens TJ (1984) A theory for the shock-wave consolidation of powders. Acta Metall 32:1243–1252

    Article  Google Scholar 

  23. Suescun-Florez E, Kashuk S, Iskander M, Bless S (2015) Predicting the uniaxial compressive response of granular media over a wide range of strain rates using the strain energy density concept. J Dyn Behav Mater 1(3):330–346

    Article  Google Scholar 

  24. Bragov AM, Lomunov AK, Sergeichev IV, Tsembelis K, Proud WG (2008) Determination of physicomechanical properties of soft soils from medium to high strain rates. Int J Impact Eng 35:967–976

    Article  Google Scholar 

  25. Martin BE, Chen W, Song B, Akers SA (2009) Moisture effects on the high strain-rate behavior of sand. Mech Mater 41:786–798

    Article  Google Scholar 

  26. Resnyansky AD, Bourne NK (2004) Shock-wave compression of a porous material. J Appl Phys 95:1760–1769

    Article  Google Scholar 

  27. Omidvar M, Iskander M, Bless S (2012) Stress-strain behavior of sand at high strain rates. Int J Impact Eng 49:192–213

    Article  Google Scholar 

  28. Prümmer R (1987) Explosivverdichtung pulvriger Substanzen. Springer, Berlin

    Book  Google Scholar 

  29. Murr LE (1988) Shock waves for industrial applications. Noyes, Park Ridge

    Google Scholar 

  30. Nesterenko VF (2001) Dynamics of heterogeneous materials. Springer, New York

    Book  Google Scholar 

  31. Sawaoka AB (1993) Shock waves in materials science. Springer, Tokyo

    Book  Google Scholar 

  32. Gourdin WH (1984) Energy deposition and microstructural modification in dynamically consolidated metal powders. J Appl Phys 55:172–181

    Article  Google Scholar 

  33. Flinn JE, Williamson RL, Berry RA, Wright RN, Gupta YM, Williams M (1988) Dynamic consolidation of type 304 stainless-steel powders in gas gun experiments. J Appl Phys 64:1446–1457

    Article  Google Scholar 

  34. Williamson RL (1990) Parametric studies of dynamic powder consolidation using a particle-level numerical model. J Appl Phys 68:1287–1296

    Article  Google Scholar 

  35. German RM (1996) Sintering theory and practice. Wiley, New York

    Google Scholar 

  36. Sawaoka AB, Kunishige H, Tamura H, Horie Y (1992) Heterogeneous shock compression mechanism of diamond powders in a metal capsule. In: Schmidt SC et al (ed) Shock compression of condensed matter-1991. American Institute of Physics, Melville, pp 621–624

    Chapter  Google Scholar 

  37. Resnyansky AD, Bourne NK, Brown EN, Millett JCF, Rae PJ, McDonald SA, Withers PJ (2014) Phase transition modeling of polytetrafluoroethylene during Taylor impact. J Appl Phys 116:223502

    Article  Google Scholar 

  38. Bell RL, Baer MR, Brannon RM, Crawford DA, Elrick MG, Hertel ES Jr, Schmitt RG, Silling SA, Taylor PA (2006) CTH user’s manual and input instructions version 7.1. Sandia National Laboratories, Albuquerque

    Google Scholar 

  39. Resnyansky AD, Weckert SA (2015) Dynamic analysis of a plate loaded by explosively driven sand. In: Song B et al (ed) Dynamic behavior of materials, vol 1, Chap. 50, Springer, New York, pp 357–368

    Google Scholar 

  40. Johnson JD (1994) The SESAME database. Report LA-UR-94-1451. Los Alamos National Laboratory, Los Alamos

    Google Scholar 

  41. Weckert SA, Freundt J, Stojko S (2013) Explosive line wave generators. Report DSTO-TN-1244. Defence Science and Technology Organisation, Edinburgh

    Google Scholar 

  42. Jones HD, Gustavson PK, Zerilli FJ (1998) Analytic equation of state for SX-2. In: Proceedings of the international symposium on detonation, Office of Naval Research, Arlington, pp 1082–1087

  43. Steinberg DJ, Cochran SG, Guinan MW (1980) A constitutive model for metals applicable at high-strain rate. J Appl Phys 51(3):1498–1504

    Article  Google Scholar 

  44. Taylor PA (1992) CTH reference manual: the Steinberg-Guinan-Lund viscoplastic model. Report SAND 92–0716. Sandia National Laboratories, Albuquerque

    Google Scholar 

  45. Resnyansky AD (2009) Thermodynamically consistent decoupled shear-volumetric strain model and CTH implementation. Report DSTO-TR-2299. Defence Science and Technology Organisation, Edinburgh

    Google Scholar 

  46. Weckert SA, Resnyansky AD (2018) Use of SHPB tests for incorporating a compaction constitutive equation within a two-phase model. AIP Conf Proc 1979:110019

    Article  Google Scholar 

  47. Goldsmith W, Sackman JL, Ewert C (1976) Static and dynamic fracture strength of Barre granite. Int J Rock Mech Min Sci Geomech Abstr 13(11):303–309

    Article  Google Scholar 

  48. Frew DJ, Forrestal MJ, Chen W (2001) A split Hopkinson pressure bar technique to determine compressive stress-strain data for rock materials. Exp Mech 41(1):40–46

    Article  Google Scholar 

  49. Hao Y, Hao H (2013) Numerical investigation of the dynamic compressive behaviour of rock materials at high strain rate. Rock Mech Rock Eng 46:373–388

    Article  Google Scholar 

  50. Horie Y, Sawaoka AB (1993) Shock compression chemistry of materials. KTK Scientific Publishers, Tokyo

    Google Scholar 

  51. Olevsky EA (1998) Theory of sintering: from discrete to continuum. Mater Sci Eng R23:41–100

    Article  Google Scholar 

  52. Maximenko A, Olevsky EA (2004) Effective diffusion coefficients in solid-state sintering. Acta Mater 52(10):2953–2963

    Article  Google Scholar 

  53. Olevsky EA, Shoales GA, German RM (2001) Temperature effect on strength evolution under sintering. Mater Res Bull 36(3):449–459

    Article  Google Scholar 

  54. Nicholas MG, Crispin RM (1982) Diffusion bonding stainless steel to alumina using aluminium interlayers. J Mater Sci 17(11):3347–3360

    Article  Google Scholar 

  55. Valverde JM, Sanchez-Jimenez PE, Perez-Maqueda LA (2015) Limestone calcination nearby equilibrium: kinetics, CaO crystal structure, sintering and reactivity. J Phys Chem C 119(4):1623–1641

    Article  Google Scholar 

  56. Gilder HM, Lazarus D (1975) Role of vacancy anharmonicity on non-Arrhenius diffusional behaviour. Phys Rev B 11(12):4916–4926

    Article  Google Scholar 

  57. Kumari M, Dass N (1994) Pressure-dependent self-diffusion and activation volume in solids: sodium. Phys Rev B 49(2):844–848

    Article  Google Scholar 

  58. Seebauer EG, Allen CE (1995) Estimating surface diffusion coefficients. Prog Surf Sci 49(3):265–330

    Article  Google Scholar 

  59. Herrmann W (1969) Constitutive equation for the dynamic compaction of ductile porous materials. J Appl Phys 40(6):2490–2499

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to M. Rausch of the DST Group for assistance in taking the experimental flash X-ray images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Resnyansky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Resnyansky, A.D., Weckert, S.A. Experiments and Constitutive Modelling of Sand Ejecta Impact. J. dynamic behavior mater. 4, 586–607 (2018). https://doi.org/10.1007/s40870-018-00177-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40870-018-00177-5

Keywords

Navigation