On the combinatorics of the universal enveloping algebra \(\widehat{U}_h({{\mathfrak {sl}}}_2)\)

  • Rafael Díaz
  • Edward Salamanca


Using combinatorial methods we study the structural coefficients of the formal homogeneous universal enveloping algebra \(\widehat{U}_h({\mathfrak {sl}}_2) \) of the special linear algebra \( {\mathfrak {sl}}_2\) over a characteristic zero field. We provide explicit formulae for the product of generic elements in \( \widehat{U}_h({\mathfrak {sl}}_2),\) and construct combinatorial objects giving flesh to these formulae; in particular, we provide explicit formulae and combinatorial interpretations for the structural coefficients of divided power Poincaré–Birkhoff–Witt basis.


Universal enveloping algebras Poincaré–Birkoff–Witt Combinatorics 

Mathematics Subject Classification

17B45 16S30 05A19 



E. Salamanca was partially supported by a “Young Researcher” − COLCIENCIAS grant.


  1. 1.
    Baker, A.: Matrix Groups: An Introduction to Lie Group Theory. Springer, London (2002)CrossRefzbMATHGoogle Scholar
  2. 2.
    Bergeron, F., Labelle, G., Leroux, P.: Combinatorial Species and Tree-Like Structures. Cambridge University Press, Cambridge (1998)zbMATHGoogle Scholar
  3. 3.
    Bergeron, N., Lam, T., Li, H.: Combinatorial Hopf algebras and towers of algebras—dimension, quantization and functorality. Algebr. Represent. Theory 15, 675–696 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Blandin, H., Díaz, R.: Rational combinatorics. Adv. Appl. Math. 40, 107–126 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Castillo, E., Díaz, R.: Rota–Baxter categories. Int. Electron. J. Algebra 5, 27–57 (2009)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Chari, V., Pressley, A.: A Guide to Quantum Groups. Cambridge Univ. Press, Cambridge (1994)zbMATHGoogle Scholar
  7. 7.
    Cheng, R., Jackson, D., Stanley, G.: Combinatorial Aspects of the Quantized Universal Enveloping Algebra of $ sl_{n+1}({\mathbb{C}})$, preprint,
  8. 8.
    Díaz, R., Pariguan, E.: Graphical introduction to classical Lie algebras. Bol. Asoc. Mat. Venez. 12, 185–216 (2005)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Díaz, R., Pariguan, E.: On hypergeometric functions and Pochhammer $k$-symbol. Divulg. Mat. 15, 179–192 (2007)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Díaz, R., Pariguan, E.: Super, quantum and non-commutative species. Afr. Diaspora J. Math. 8, 90–130 (2009)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Díaz, R., Pariguan, E.: Symmetric quantum Weyl algebras. Ann. Math. Blaise Pascal 11, 187–203 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Dixmier, J.: Enveloping Algebras. North-Holland, Amsterdam (1977)zbMATHGoogle Scholar
  13. 13.
    Erdmann, K., Wildon, M.: Introduction to Lie Algebras. Springer, London (2006)CrossRefzbMATHGoogle Scholar
  14. 14.
    Fulton, W., Harris, J.: Representation Theory. Springer, New York (1991)zbMATHGoogle Scholar
  15. 15.
    Grinberg, D., Reiner, V.: Hopf Algebras in Combinatorics, preprint. arXiv:1409.8356 Google Scholar
  16. 16.
    Humphreys, J.: Introduction to Lie Algebras and Representation Theory. Springer, New York (1972)CrossRefzbMATHGoogle Scholar
  17. 17.
    Jacobson, N.: Lie Algebras. Interscience, New York (1962)zbMATHGoogle Scholar
  18. 18.
    Joyal, A.: Une théorie combinatoire des séries formelles. Adv. Math. 42, 1–82 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Joyal, A.: Foncteurs analytiques et espéces de structures. In: Combinatoire énumérative, Lecture Notes in Mathematics, vol. 1234, pp. 126–159. Springer, Berlin (1986)Google Scholar
  20. 20.
    Kac, V.: Infinite dimensional Lie algebras. Cambridge University Press, Cambridge (1990)CrossRefzbMATHGoogle Scholar
  21. 21.
    Kassel, C.: Quantum Groups. Springer, New York (1995)CrossRefzbMATHGoogle Scholar
  22. 22.
    Kontsevich, M.: Deformation quantization of Poisson manifolds. Lett. Math. Phys. 66, 157–216 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Kung, J. (ed.): Gian-Carlo Rota on Combinatorics. Birkhäuser, Boston (1995)Google Scholar
  24. 24.
    Laplaza, M.: A new result of coherence for distributivity. In: Coherence in Categories, Lecture Notes in Mathematics, vol. 281, pp. 214–235. Springer, Berlin (1972)Google Scholar
  25. 25.
    Laplaza, M.: Coherence for distributivity. In: Coherence in Categories, Lecture Notes in Mathematics, vol. 281, pp. 29–65. Springer, Berlin (1972)Google Scholar
  26. 26.
    Loday, J.-L., Ronco, M.: Combinatorial Hopf algebras. In: Quanta of Maths, Clay Mathematics Proceedings, vol. 11, pp. 347–383. Amer. Math. Soc., Providence (2011)Google Scholar
  27. 27.
    Mubeen, S., Rehman, A.: A note on $k$-Gamma function and Pochhammer $k$-symbol. J. Inform. Math. Sci. 6, 93–107 (2014)Google Scholar
  28. 28.
    Poincaré, H.: Sur les groupes continus. Trans. Camb. Philos. Soc. 18, 220255 (1900)zbMATHGoogle Scholar
  29. 29.
    Shepler, A., Witherspoon, S.: PoincaréBirkhoffWitt theorems. In: Eisenbud, D., Iyengar, S., Singh, A., Stafford, J., Van den Bergh, M. (eds.) Commutative Algebra and Noncommutative Algebraic Geometry I, vol. 67. MSRI Publications, Berkeley (2015)Google Scholar
  30. 30.
    Schmid, W.: Hopf algebras in combinatorics. Can. J. Math. 45, 412–428 (1993)CrossRefGoogle Scholar
  31. 31.
    Ton-That, T., Tran, T.-D.: Revue dhistoire des mathématiques 5, 249–284 (1999)Google Scholar
  32. 32.
    Varadarajan, V.: Lie Groups, Lie Algebras, and their Representations. Springer, Berlin (1974)zbMATHGoogle Scholar

Copyright information

© Instituto de Matemática e Estatística da Universidade de São Paulo 2018

Authors and Affiliations

  1. 1.Facultad de Ciencias, Escuela de MatemáticasUniversidad Nacional de Colombia - Sede MedellínMedellínColombia
  2. 2.FaMAF-CIEM (CONICET)Universidad Nacional de CórdobaCórdobaArgentina

Personalised recommendations