Modeling vehicle indoor air quality using sensor data analytics

Abstract

A working person on an average spends 1.5–2 h every day traveling either to their places of work or for other daily activities, using metros, trams, buses, and cars, as common modes of travel. Most of such commuters regularly suffer from health conditions like headache, breathless condition, drowsiness, etc. Numerous accidents have been reported due to drowsiness while driving, which may occur due to the build-up of carbon-dioxide (CO2) build in the vehicle chamber. This paper attempts to monitor, analyze, and predict air quality inside the vehicle. This work proposes a sensing system using an off-the-shelf sensor Sensordrone which is connected to an Android Smartphone using Bluetooth Low Energy. The data obtained from the proposed sensing system are then utilized to perform predictive analysis of CO2 build-up inside the vehicular chamber using Auto Regressive Integrated Moving Average (ARIMA) and Support Vector Regression (SVR). Root-Mean-Square Error for SVR and ARIMA models is 47.91 ppm and 55.32 ppm CO2, respectively, indicating that SVR outperformed ARIMA in predicting the CO2 build-up inside the vehicle.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Aaafoundation (2019) American driving survey, 2014–2017. https://aaafoundation.org/american-driving-survey-2014-2017/. Accessed 10 Jan 2021

  2. 2.

    Arndt M, Sauer M (2005) Infrared carbon dioxide sensor and its applications in automotive air-conditioning systems. In: Valldorf J, Gessner W (eds) Advanced microsystems for automotive applications 2005. Advanced microsystems for automotive applications. Springer, Berlin. https://doi.org/10.1007/3-540-27463-4_24

    Google Scholar 

  3. 3.

    Atkinson WJ, Hill WR, Mathur GD (2017) The impact of increased air recirculation on interior cabin air quality. SAE Tech Pap Ser. https://doi.org/10.4271/2017-01-0169

    Article  Google Scholar 

  4. 4.

    Fruin SA, Hudda N, Sioutas C, Delfino RJ (2011) Predictive model for vehicle air exchange rates based on a large representative sample. Environ Sci Technol 45(8):3569–3575. https://doi.org/10.1021/es103897u

    Article  Google Scholar 

  5. 5.

    Fu X (2019) In-vehicle exposures at transportation and the health concerns. Indoor Environ Qual Health Risk Healthier Environ . https://doi.org/10.1007/978-981-32-9182-9_6

    Article  Google Scholar 

  6. 6.

    Gładyszewska-Fiedoruk K, Teleszewski TJ (2020) Modeling of humidity in passenger cars equipped with mechanical ventilation. Energies 13(11):2987. https://doi.org/10.3390/en13112987

    Article  Google Scholar 

  7. 7.

    Grady ML, Jung H, Kim Y, Park JK, Lee BC (2013) Vehicle cabin air quality with fractional air recirculation. SAE Tech Pap Ser. https://doi.org/10.4271/2013-01-1494

    Article  Google Scholar 

  8. 8.

    Huber J, Weber C, Eberhardt A, Wöllenstein J (2016) Photoacoustic CO2-sensor for automotive applications. Proc Eng 168:3–6. https://doi.org/10.1016/j.proeng.2016.11.111

    Article  Google Scholar 

  9. 9.

    Hyundai controls CO2 level inside Genesis cabin (2018) https://www.sae.org/news/2014/11/hyundai-controls-co2-level-inside-genesis-cabin. Accessed 10 Jan 2021

  10. 10.

    Jain S (2017) Exposure to in-vehicle respirable particulate matter in passenger vehicles under different ventilation conditions and seasons. Sustain Environ Res 27(2):87–94. https://doi.org/10.1016/j.serj.2016.08.006

    Article  Google Scholar 

  11. 11.

    Jung H (2013) Modeling CO2 concentrations in vehicle cabin. SAE Tech Pap Ser. https://doi.org/10.4271/2013-01-1497

    Article  Google Scholar 

  12. 12.

    Laussmann D, Helm D (2011) air change measurements using tracer gases methods and results. Significance of air change for indoor air quality. Chem Emiss Control Radioact Pollut Indoor Air Qual. https://doi.org/10.5772/18600

    Article  Google Scholar 

  13. 13.

    Lee ES, Zhu Y (2014) Application of a high-efficiency cabin air filter for simultaneous mitigation of ultrafine particle and carbon dioxide exposures inside passenger vehicles. Environ Sci Technol. https://doi.org/10.1021/es404952q

    Article  Google Scholar 

  14. 14.

    Lohani D, Acharya D (2016) Real time in-vehicle air quality monitoring using mobile sensing. IEEE Ann India Conf INDICON. https://doi.org/10.1109/indicon.2016.7839099

    Article  Google Scholar 

  15. 15.

    Lohani D, Barthwal A, Acharya D (2018) Predictive modelling of in-vehicle CO2 concentration using sensor data analytics. IEEE Sens 2018:1–4. https://doi.org/10.1109/icsens.2018.8589883

    Article  Google Scholar 

  16. 16.

    Lu X, Lu T, Viljane M (2011) Estimation of space air change rates and CO2 generation rates for mechanically-ventilated buildings. Adv Comput Sci Eng. https://doi.org/10.5772/16062

    Article  Google Scholar 

  17. 17.

    Luo A, Li X, Li Y, Li J (2018) Application of accurate online support vector regression in atmospheric SO2 concentration prediction. Chin Control Decis (CCDC). https://doi.org/10.1109/ccdc.2018.8408231

    Article  Google Scholar 

  18. 18.

    Micucci D, Corno F (2019) Reliability on pervasive well-being: will it soon become a reality? J Reliab Intell Environ 5(3):129–130. https://doi.org/10.1007/s40860-019-00087-w

    Article  Google Scholar 

  19. 19.

    Nishi Y (1981) Chapter 2 measurement of thermal balance of man. Stud Environ Sci. https://doi.org/10.1016/s0166-1116(08)71079-3

    Article  Google Scholar 

  20. 20.

    Ott W, Klepeis N, Switzer P (2007) Air change rates of motor vehicles and in-vehicle pollutant concentrations from secondhand smoke. J Eposure Sci Environ Epidemiol 18(3):312–325. https://doi.org/10.1038/sj.jes.7500601

    Article  Google Scholar 

  21. 21.

    Palumbo F, La Rosa D, Ferro E, Bacciu D, Gallicchio C, Micheli A, Chessa S, Vozzi F, Parodi O (2017) Reliability and human factors in ambient assisted living environments. J Reliab Intell Environ 3(3):139–157. https://doi.org/10.1007/s40860-017-0042-1

    Article  Google Scholar 

  22. 22.

    Qi C, Stanley N, Pui DYH, Kuehn TH (2008) Laboratory and on-road evaluations of cabin air filters using number and surface area concentration monitors. Environ Sci Technol 42(11):4128–4132. https://doi.org/10.1021/es703216c

    Article  Google Scholar 

  23. 23.

    Rastogi K, Lohani D (2020) An internet of things framework to forecast indoor air quality using machine learning. Commun Comput Inf Sci. https://doi.org/10.1007/978-981-15-4301-2_8

    Article  Google Scholar 

  24. 24.

    Satish U, Mendell MJ, Shekhar K, Hotchi T, Sullivan D, Streufert S, Fisk WJ (2012) Is CO2 an indoor pollutant? Direct effects of low-to-moderate CO2 concentrations on human decision-making performance. Environ Health Perspect 120(12):1671–1677. https://doi.org/10.1289/ehp.1104789

    Article  Google Scholar 

  25. 25.

    SELTOS | Inspired by the Badass in You (2019) https://www.kia.com/in/our-vehicles/seltos/showroom.html. Accessed 10 Jan 2021

  26. 26.

    Sensordrone: The 6th Sense of Your Smartphone...& Beyond! (2013) https://www.kickstarter.com/projects/453951341/sensordrone-the-6th-sense-of-your-smartphoneand-be. Accessed 10 Jan 2021

  27. 27.

    Siris VA, Fotiou N, Mertzianis A, Polyzos GC (2019) Smart application-aware IoT data collection. J Reliab Intell Environ 5(1):17–28. https://doi.org/10.1007/s40860-019-00077-y

    Article  Google Scholar 

  28. 28.

    Taneja K, Ahmad S, Ahmad K, Attri SD (2016) Time series analysis of aerosol optical depth over New Delhi using Box-Jenkins ARIMA modeling approach. Atmos Pollut Res 7(4):585–596. https://doi.org/10.1016/j.apr.2016.02.004

    Article  Google Scholar 

  29. 29.

    United States Environmental Protection Agency (US EPA) (1991) Introduction to indoor air quality. A reference manual

  30. 30.

    Vande JD, Sonderfeld H, Jeanjean APR, Panchal R, Leigh RJ, Allen MA, Monks PS (2018) Experimental and modeling assessment of a novel automotive cabin PM removal system. Aerosol Sci Technol 52(11):1249–1265. https://doi.org/10.1080/02786826.2018.1490694

    Article  Google Scholar 

  31. 31.

    Wang H, Li C (2018) Distributed quantile regression over sensor networks. IEEE Trans Signal Inf Process Netw 4(2):338–348. https://doi.org/10.1109/tsipn.2017.2699923

    MathSciNet  Article  Google Scholar 

  32. 32.

    World Health Organization (2010) Regional Office for Europe. WHO guidelines for indoor air quality: selected pollutants. World Health Organization. Regional Office for Europe. https://apps.who.int/iris/handle/10665/260127. Accessed 10 Jan 2021

  33. 33.

    Xu X, Duan L (2017) Predicting crash rate using logistic quantile regression with bounded outcomes. IEEE Access 5:27036–27042. https://doi.org/10.1109/access.2017.2773612

    Article  Google Scholar 

  34. 34.

    Zhu JY, Sun C, Li VOK (2017) An extended spatio-temporal granger causality model for air quality estimation with heterogeneous urban big data. IEEE Trans Big Data 3(3):307–319. https://doi.org/10.1109/tbdata.2017.2651898

    Article  Google Scholar 

  35. 35.

    Zhu Y, Eiguren-Fernandez A, Hinds WC, Miguel AH (2007) In-cabin commuter exposure to ultrafine particles on Los Angeles freeways. Environ Sci Technol 41(7):2138–2145. https://doi.org/10.1021/es0618797

    Article  Google Scholar 

  36. 36.

    Zulauf N, Dröge J, Klingelhöfer D, Braun M, Oremek GM, Groneberg DA (2019) Indoor air pollution in cars: an update on novel insights. Int J Environ Res Public Health 16(13):2441. https://doi.org/10.3390/ijerph1613244

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Divya Lohani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lohani, D., Barthwal, A. & Acharya, D. Modeling vehicle indoor air quality using sensor data analytics. J Reliable Intell Environ (2021). https://doi.org/10.1007/s40860-021-00137-2

Download citation

Keywords

  • ARIMA
  • Carbon dioxide
  • Mobile sensing
  • Sensordrone
  • Support vector regression
  • Vehicle indoor air quality