Skip to main content
Log in

Using in vitro plants to study the cassava response to Xanthomonas phaseoli pv. manihotis infection

  • Original Article
  • Published:
Tropical Plant Pathology Aims and scope Submit manuscript

Abstract

Cassava Bacterial Blight (CBB), caused by Xanthomonas phaseoli pv. manihotis (Xpm), is the most important bacterial disease of cassava (Manihot esculenta). Xpm employs Transcription Activator-Like effectors (TALE) to induce the expression of host susceptibility (S) genes favoring bacterial growth. The identification of resistant and susceptible cassava varieties as well as the identification of the cassava gene MeSweet10a as a target of the effector TAL20, have been conducted on plants grown from mature stem-cuttings. We explored the possibility of using in vitro plants to study cassava-Xpm interactions. Cassava in vitro plants of varieties 60444 and CM6438–14 were susceptible and resistant, respectively, to infection by strain Xpm668. In addition, the expression of MeSweet10a was induced in the susceptible but not in the resistant variety, which was not associated with polymorphisms in the Effector Binding Element (EBE) reported for TAL20. Three other Xpm strains, Xpm531, Xpm681 and Xpm1061, were also able to induce the TAL20 cognate target gene in the susceptible cassava variety 60444. These results demonstrate the usefulness of in vitro plants to study the phenotypic and molecular responses of cassava during Xpm infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas A (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–1512

    Article  CAS  PubMed  Google Scholar 

  • Castiblanco LF, Gil J, Rojas A, Osorio D, Gutiérrez S, Muñoz A, Perez A, Koebnik R, Szurek B, López C, Restrepo S, Verdier V, Bernal A (2013) TALE1 from Xanthomonas axonopodis pv. manihotis acts as a transcriptional activator in plant cells and is important for pathogenicity in cassava plants. Molecular Plant Pathology 14:84–95

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Hou B, Lalonde S, Takanaga H, Hartung M, Qu X, Guo W, Kim J, Underwood W, Chaudhuri B, Chermak D, Antony G, White F, Somerville S, Mudgett M, Frommer W (2010) Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 468:527–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohn M, Bart RS, Shybut M, Dahlbeck D, Gomez M, Morbitzer R, Hou B-H, Frommer W, Lahaye T, Staskawicz B (2014) Xanthomonas axonopodis virulence is promoted by a transcription activator-like effector-mediated induction of a SWEET sugar transporter in cassava. Molecular Plant-Microbe Interactions 27:1186–1198

    Article  PubMed  Google Scholar 

  • Cohn M, Morbitzer R, Lahaye T, Staskawicz B (2016) Comparison of gene activation by two TAL effectors from Xanthomonas axonopodis pv. manihotis reveals candidate host susceptibility genes in cassava. Molecular Plant Pathology 17:875–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Constantin EC, Cleenwerck I, Maes BS, Van Malderghem C, De Vos P, Cottyn B (2016) Genetic characterization of strains named as Xanthomonas axonopodis pv. dieffenbachiae leads to a taxonomic revision of the X. axonopodis species complex. Plant Pathology 65:792–806

    Article  CAS  Google Scholar 

  • Cox KL, Meng F, Wilkins KE, Li F, Wang P, Booher NJ, Carpenter S, Chen L, Zheng H, Gao X, Zheng Y, Fei Z, Yu JZ, Isakeit T, Wheeler T, Frommer WB, He P, Bogdanove AJ, Shan L (2017) TAL effector driven induction of a SWEET gene confers susceptibility to bacterial blight of cotton. Nature Communications 8:155–188

    Article  Google Scholar 

  • Deng D, Yan C, Pan X, Mahfouz M, Wang J, Zhu J-K, Shi Y, Yan N (2012) Structural basis for sequence-specific recognition of DNA by TAL effectors. Science 335:720–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howeler RL, Lutaladio NB, Thomas G (2013) Save and grow: cassava. A guide to sustainable production intensification. FAO, Rome

    Google Scholar 

  • Hutin M, Al P-Q, Lopez C, Szurek B (2015a) MorTAL Kombat: the story of defense against TAL effectors through loss-of-susceptibility. Frontiers in Plant Science 6:535

    PubMed  PubMed Central  Google Scholar 

  • Hutin M, Sabot F, Ghesquiere A, Koebnik R, Szurek B (2015b) A knowledge-based molecular screen uncovers a broad-spectrum OsSWEET14 resistance allele to bacterial blight from wild rice. The Plant Journal 84:694–703

    Article  CAS  PubMed  Google Scholar 

  • Jarvis A, Ramirez J, Herrera B, Navarro C (2012) Is cassava the answer to African climate change adaptation? Tropical Plant Biology 5:9–29

    Article  Google Scholar 

  • Jorge V, Fregene M, Duque MC, Bonierbale M, Thome J, Verdier V (2000) Genetic mapping of resistance to bacterial blight disease in cassava. Theoretical and Applied Genetics 101:865–872

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Mak A, Bradley P, Cernadas RA, Bogdanove A, Stoddard B (2012) The crystal structure of TAL effector PthXo1 bound to its DNA target. Science 335:716–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCallum EJ, Anjanappa RB, Gruissem W (2017) Tackling agriculturally relevant diseases in the staple crop cassava (Manihot esculenta). Current Opinion in Plant Biology 38:50–58

    Article  PubMed  Google Scholar 

  • Muñoz BA, Szurek B, López CE (2013) Tell me a tale of TALEs. Molecular Biotechnology 53:228–235

    Article  Google Scholar 

  • Muñoz A, Perez A, Gomez-Cano F, Gil J, Michelmore R, Bernal A, Szureck B, Lopez C (2014) RNAseq analysis of cassava reveals similar plant responses upon infection with pathogenic and non-pathogenic strains of Xanthomonas axonopodis pv. manihotis. Plant Cell Reports 33:1901–1912

    Article  Google Scholar 

  • Mutka AM, Fentress SJ, Sher JW, Berry J, Pretz C, Nusinow D, Bart R (2016) Quantitative, image-based phenotyping methods provide insight into spatial and temporal dimensions of plant disease. Plant Physiology 172:650–660

    CAS  PubMed  PubMed Central  Google Scholar 

  • Norton R (2014) Global starch market outlook and feedstock economics. Cassava World. Africa. Centre for Management Technology (CMT), Lusaka

  • Pereira A, Carazzolle MF, Abe VY, De Oliveira M, Domingues M, Silva J, Cernadas R, Benedetti C (2014) Identification of putative TAL effector targets of the citrus canker pathogens shows functional convergence underlying disease development and defense response. BMC Genomics 15:157

    Article  PubMed  PubMed Central  Google Scholar 

  • Restrepo S, Verdier V (1997) Geographical differentiation of the population of Xanthomonas axonopodis pv. manihotis in Colombia. Applied and Environmental Microbiology 63:4427–4434

    CAS  PubMed  PubMed Central  Google Scholar 

  • Romer P, Hahn S, Jordan T, Straub T, Bonas U, Lahaye T (2007) Plant pathogen recognition mediated by promoter activation of the pepper Bs3 resistance gene. Science 318:645–648

    Article  PubMed  Google Scholar 

  • Shaner G, Finney RE (1977) The effect of nitrogen fertilization on the expression of slow-mildewing resistance in Knox wheat. Phytopathology 67:1051–1056

    Article  CAS  Google Scholar 

  • Soto J, Mora R, Mathew B, León J, Gomez F, Ballvora A, López C (2017) Major novel QTL for resistance to cassava bacterial blight identified through a multi-environmental analysis. Frontiers in Plant Science 8:1169

    Article  Google Scholar 

  • Streubel J, Blucher C, Landgraf A, Boch J (2012) TAL effector RVD specificities and efficiencies. Nature Biotechnology 30:593–595

    Article  CAS  PubMed  Google Scholar 

  • Streubel J, Pesce C, Hutin M, Koebnik R, Boch J, Szurek B (2013) Five phylogenetically close rice SWEET genes confer TAL effector-mediated susceptibility to Xanthomonas oryzae pv. oryzae. New Phytologist 200:808–819

    Article  CAS  PubMed  Google Scholar 

  • Trujillo CA, Ochoa JC, Mideros F, Restrepo S, López C, Bernal A (2014) A complex population structure of the cassava pathogen. Microbial Ecology 68:155–167

    Article  PubMed  Google Scholar 

  • Verdier V, Boher B, Maraite H, Geiger JP (1994) Pathological and molecular characterization of Xanthomonas campestris strains causing diseases of cassava (Manihot esculenta). Applied and Environmental Microbiology 60:4478–4486

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Zhang X, Fan Y, Gao Y, Zhu Q, Zheng C, Qin T, Li Y, Che J, Zhang M, Yang B, Liu Y, Zhao K (2015) XA23 is an executor R protein and confers broad-spectrum disease resistance in rice. Molecular Plant 8:290–302

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Yin Z, White F (2015) TAL effectors and the executor R genes. Frontiers in Plant Science 6:641

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by a Colciencias grant (Contract Number 315-2013) and Dirección de Investigaciones de la Universidad Nacional, sede Bogotá (Proyecto Hermes 37508). The authors thank Adriana Bernal, Boris Szurek and Paula Diaz for fruitful discussions. Special acknowledgments to Adriana Bernal for reviewing and editing the manuscript and Paula Diaz for help in preparing the graphs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camilo E. López.

Additional information

Section Editor: Rodrigo Almeida

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mora, R.E., Rodriguez, M.A., Gayosso, L.Y. et al. Using in vitro plants to study the cassava response to Xanthomonas phaseoli pv. manihotis infection. Trop. plant pathol. 44, 423–429 (2019). https://doi.org/10.1007/s40858-019-00296-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40858-019-00296-x

Keywords

Navigation