Skip to main content
Log in

Baseline sensitivity of Colletotrichum acutatum isolates from Brazilian strawberry fields to azoxystrobin, difenoconazole, and thiophanate-methyl

  • Original Article
  • Published:
Tropical Plant Pathology Aims and scope Submit manuscript

Abstract

Anthracnose fruit rot, caused by Colletotrichum acutatum, is an important disease affecting strawberry fields in Brazil where fungicide applications are frequently needed for disease control. Isolates of C. acutatum were collected in conventional and organic strawberry fields in the states of São Paulo and Espírito Santo, Brazil, from 2013 to 2015. Sensitivity to azoxystrobin, difenoconazole and thiophanate-methyl was evaluated based on mycelial growth, spore germination, detached fruit assays and molecular characterization of genes targeted by these fungicides. The effective concentration needed to reduce mycelial growth by 50% (EC50) was determined for 78 isolates. Mean EC50 values for isolates collected in organic fields were 0.44 and 0.10 μg/ml, and in conventional areas were 0.62 and 0.09 μg/ml for azoxystrobin and difenoconazole, respectively. Mean EC50 values, determined using spore germination test, for 43 isolates were 0.04 and 0.13 μg/ml for isolates from organic and conventional fields, respectively, for azoxystrobin. Azoxystrobin- and difenoconazole-resistant isolates were not observed. Populations of C. acutatum showed insensitivity rather than resistance to thiophanate-methyl and EC50 values could not be determined. Molecular analyses of the cytb, cyp51 and β-tub genes did not reveal any of the most common point mutations associated with fungicide resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Adaskaveg JE, Hartin RJ (1997) Characterization of Colletotrichum acutatum isolates causing anthracnose of almond and peach in California. Phytopathology 87:979–987

    Article  CAS  Google Scholar 

  • AGROFIT (2017) Sistema de agrotóxicos fitossanitários. Available at: [http://extranet.agricultura.gov.br/agrofit_cons/principal_agrofit_cons.]. Accessed on December 14, 2017

  • Amiri A, Heath SM, Peres NA (2013) Phenotypic characterization of multifungicide resistance in Botrytis cinerea isolates from strawberry fields in Florida. Plant Disease 97:393–401

    Article  Google Scholar 

  • Avila-Adame C, Olaya G, Köller W (2003) Characterization of Colletotrichum graminicola isolates resistant to strobilurin-related QoI fungicides. Plant Disease 87:1426–1432

    Article  CAS  Google Scholar 

  • Baggio JS, Peres NA, Amorim L (2018) Sensitivity of Botrytis cinerea isolates from conventional and organic strawberry fields in Brazil to azoxystrobin, iprodione, pyrimethanil, and thiophanate-methyl. Plant Disease

  • Bartlett DW, Clough JM, Godwin JR, Hall AA, Hamer M, Parr-Dobrzanski B (2002) The strobilurin fungicides. Pest Management Science 58:649–662

    Article  CAS  Google Scholar 

  • Bragança CAD, Damm U, Baroncelli R, Massola Junior NS, Crous PW (2016) Species of the Colletotrichum acutatum complex associated with anthracnose diseases of fruit in Brazil. Fungal Biology 120:547–561

    Article  Google Scholar 

  • Carroll J, Pritts MP, Heidenreich C (2016) Production Guide for Organic Strawberries. New York State Integrated Pest Management Program Ithaca, NY

  • Chung WH, Ishii H, Nishimura K, Fukaya M, Yano K, Kajitani Y (2006) Fungicide sensitivity and phylogenetic relationship of anthracnose fungi isolated from various fruit crops in Japan. Plant Disease 90:506–512

    Article  CAS  Google Scholar 

  • Davidse LC (1986) Benzimidazole fungicides: mechanisms of action and biological impact. Annual Review of Phytopathology 24:43–65

    Article  CAS  Google Scholar 

  • Domingues RJ, Töfoi JG, Oliveira SHF, Garcia Junior O (2001) Controle químico da flor preta (Colletotrichum acutatum Simmonds) do morangueiro em condições de campo. Arquivos do Instituto Biológico 68:37–42

    Google Scholar 

  • Forcelini BB, Seijo TE, Amiri A, Peres NA (2016) Resistance in strawberry isolates of Colletotrichum acutatum from Florida to quinone-outside inhibitor fungicides. Plant Disease 100:2050–2056

    Article  CAS  Google Scholar 

  • Förster H, Kanetis L, Adaskaveg JE (2004). Spiral gradient dilution, a rapid method for determining growth responses and 50% effective concentration values in fungus–fungicide interactions. Phytopathology 94:163-170.

    Article  Google Scholar 

  • Freeman S (2008) Management, survival strategies, and host range of Colletotrichum acutatum on strawberry. HortScience 43:66–68

    Google Scholar 

  • Freeman S, Nizani Y, Dotan S, Even S, Sando T (1997) Control of Colletotrichum acutatum in strawberry under laboratory, greenhouse, and field conditions. Plant Disease 81:749–752

    Article  CAS  Google Scholar 

  • Freeman S, Horowitz S, Sharon A (2001) Pathogenic and nonpathogenic lifestyles in Colletotrichum acutatum from strawberry and other plants. Phytopathology 91:986–992

    Article  CAS  Google Scholar 

  • Gopinath K, Radhakrishnana NV, Jayaraj J (2006) Effect of propiconazole and difenoconazole on the control of anthracnose of chili fruits caused by Colletotrichum capsici. Crop Protection 25:1024–1031

    Article  CAS  Google Scholar 

  • Han JH, Chon JK, Ahn JH, Choi IY, Lee YH, Kim KS (2016) Whole genome sequence and genome annotation of Colletotrichum acutatum, causal agent of anthracnose in pepper plants in South Korea. Genomics Data 8:45–46

    Article  Google Scholar 

  • Hawkins NJ, Cools HJ, Sierotzki H, Shaw MW, Knogge W, Kelly SL, Kelly DE, Fraaije BA (2014) Paralog re-emergence: a novel, historically contingent mechanism in the evolution of antimicrobial resistance. Molecular Biology and Evolution 31:1793–1802

    Article  CAS  Google Scholar 

  • IDAF, 2012. Grade de agrotóxicos: agrotóxicos cadastrados no Instituto de Defesa Agropecuária e Florestal do Espírito Santo (IDAF) para uso em morango. Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural,Vitória, ES

  • Inoue K, Tsurumi T, Ishii H, Park P, Ikeda K (2012) Cytological evaluation of the effect of azoxystrobin and alternative oxidase inhibitors in Botrytis cinerea. FEMS Microbiology Letters 326:83–90.

    Article  Google Scholar 

  • Jin L-H, Chen Y, Chen C-J, Wang J-X, Zhou M-G (2009) Activity of azoxystrobin and SHAM to four phytopathogens. Agricultural Sciences in China 8:835–842

    Article  Google Scholar 

  • Leandro LFS, Gleason ML, Nutter FW Jr, Wegulo SN, Dixon PM (2003) Strawberry plant extracts stimulate secondary conidiation by Colletotrichum acutatum on symptomless leaves. Phytopathology 93:1285–1291

    Article  CAS  Google Scholar 

  • Liu X, Yu F, Schnabel G, Wu J, Wang Z, Ma Z (2011) Paralogous cyp51 genes in Fusarium graminearum mediate differential sensitivity to sterol demethylation inhibitors. Fungal Genetics and Biology 48:113–123

    Article  CAS  Google Scholar 

  • Ma Z, Michailides TJ (2005) Advances in understanding molecular mechanisms of fungicide resistance and molecular detection of resistant genotypes in phytopathogenic fungi. Crop Protection 24:853–863

    Article  CAS  Google Scholar 

  • Mair WJ, Deng W, Mullins JG, West S, Wang P, Besharat N, Ellwood RP, Oliver RP, Lopez-Ruiz FJ (2016) Demethylase inhibitor fungicide resistance in Pyrenophora teres f. Sp. teres associated with target site modification and inducible overexpression of Cyp51. Frontiers in Microbiology 7:1279

    Article  Google Scholar 

  • Mertely JC, Forcelini BB, Peres, NA, 2017. Anthracnose fruit rot of strawberry. Publ. No. PP-207. University of Florida. IFAS, EDIS. Gainesville

  • Mondal SN, Bhatia A, Shilts T, Timmer LW (2005) Baseline sensitivities of fungal pathogens of fruit and foliage of citrus to azoxystrobin, pyraclostrobin, and fenbuconazole. Plant Disease 89:1186–1194

    Article  CAS  Google Scholar 

  • Nakaune R, Nakano M (2007) Benomyl resistance of Colletotrichum acutatum is caused by enhanced expression of beta-tubulin 1 gene regulated by putative leucine zipper protein CaBEN1. Fungal Genetics and Biology 44:1324–1335

    Article  CAS  Google Scholar 

  • Pereira WV, Primiano IV, Morales RGF, Peres NA, Amorim L, May De Mio LL (2017) Reduced sensitivity to azoxystrobin of Monilina fructicola isolates from Brazilian stone fruits is not associated with previously described mutation in the cytochrome b gene. Plant Disease 101:766–773

    Article  Google Scholar 

  • Peres NAR, Souza NL, Peever TL, Timmer LW (2004) Benomyl sensitivity of isolates of Colletotrichum acutatum and C. gloeosporioides from citrus. Plant Disease 88:125–130

    Article  CAS  Google Scholar 

  • Peres NA, Timmer LW, Adaskaveg JE, Correll JC (2005) Lifestyles of Colletotrichum acutatum. Plant Disease 89:784–796

    Article  Google Scholar 

  • Seijo TE, Chandler CK, Mertely JC, Moyer C, Peres NA (2008) Resistance of strawberry cultivars and advanced selections to anthracnose and Botrytis fruit rots. Proceedings of the Florida state horticultural. Society 121:246–248

    Google Scholar 

  • Tanaka MAS, Passos FA, Betty JA (1997) Resistência de Colletotrichum fragariae e Colletotrichum acutatum a benomyl na cultura do morango no Estado de São Paulo. Scientia Agricola 54:139–146

    Article  CAS  Google Scholar 

  • Ureña-Padilla AR, MacKenzie SJ, Bowen BW, Legard DE (2002) Etiology and population genetics of Colletotrichum spp. causing crown and fruit rot of strawberry. Phytopathology 92:1245–1252

    Article  Google Scholar 

  • Utture SC, Banerjee K, Dasgupta S, Patil SH, Jadhav MR, Wagh SS, Kolekar SS, Anuse MA, Adsule PG (2011) Dissipation and distribution behavior of azoxystrobin, carbendazim, and difenoconazole in pomegranate fruits. Journal of Agricultural and Food Chemistry 59:7866–7873

    Article  CAS  Google Scholar 

  • Whitaker VM, Boyd NS, Peres NA, Noling JW, Renkema J (2016) Strawberry production. In: Freeman JH, Vallad GE, Dittmar PJ (Eds.) Vegetable Production Handbook of Florida. University of Florida, Gainesville, FL, USA: IFAS, EDIS. pp. 281–300

  • Yan X, Ma WB, Li Y, Wang H, Que YW, Ma ZH, Talbot NJ, Wang ZY (2011) A sterol 14 α-demethylase is required for conidiation, virulence and for mediating sensitivity to sterol demethylation inhibitors by the rice blast fungus Magnaporthe oryzae. Fungal Genetics and Biology 48:144–153

    Article  CAS  Google Scholar 

  • Ziogas BN, Malandrakis AA (2015) Sterol biosynthesis inhibitors: C14 demethylation (DMIs). In: Ishii H, Hollomon DW (eds) Fungicide resistance in plant pathogens, principles and a guide to practical management, part III. Springer, Japan, pp 199–216

    Google Scholar 

Download references

Acknowledgements

This research was supported by the São Paulo Research Foundation (FAPESP) under contracts number 2013/21930-6 and 2014/16198-7. The authors also thank Dr. Hélcio Costa (INCAPER, Espírito Santo) for providing some of the isolates used in this study and Bruna Momesso, Silvia A. Lourenço, and Teresa E. Seijo for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliana S. Baggio.

Additional information

Section Editor: Marcelo A. Carmona

Electronic supplementary material

Table S1

(DOCX 13 kb)

Table S2

(DOCX 13 kb)

Table S3

(DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baggio, J.S., Wang, NY., Peres, N.A. et al. Baseline sensitivity of Colletotrichum acutatum isolates from Brazilian strawberry fields to azoxystrobin, difenoconazole, and thiophanate-methyl. Trop. plant pathol. 43, 533–542 (2018). https://doi.org/10.1007/s40858-018-0232-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40858-018-0232-2

Keywords

Navigation