Advertisement

Tropical Plant Pathology

, Volume 43, Issue 2, pp 146–151 | Cite as

Biofilm formation by Xanthomonas campestris pv. viticola affected by abiotic surfaces and culture media

  • Myrzânia L. Guerra
  • Carolina B. Malafaia
  • Alexandre J. Macedo
  • Márcia V. Silva
  • Rosa L. R. Mariano
  • Elineide B. Souza
Short Communication
  • 119 Downloads

Abstract

Biofilms are dense surface-associated communities formed by microorganisms. Formation of these structures by the plant pathogenic bacterium Xanthomonas campestris pv. viticola (bacterial canker of grapevine) had not previously been studied. The ability of seven strains of this bacterium to adhere to abiotic surfaces and to form biofilms in vitro was evaluated under different conditions. The surfaces tested were polystyrene and glass using microtiter plates and tubes, respectively. Four liquid culture media were used, nutrient-dextrose-yeast extract (NYD), yeast extract-dextrose-calcium carbonate (YDC), Kado 523 (KADO) and Luria-Bertani (LB). The biofilm architecture was examined by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). Seven strains adhered to polystyrene in the microtiter plates and formed biofilms in all culture media at weak, moderate, and strong levels. In glass tubes, only strains Xcv229 and Xcv158 formed biofilms. SEM of Xcv229 and Xcv158 revealed typical biofilm architectures. CLSM showed that only Xcv229 formed an initial matrix structure characteristic of biofilms. The X. campestris pv. viticola strains exhibited different levels of biofilm formation in different culture media, of which LB and KADO were the best. Therefore, bacterial growth in polystyrene microtiter plates using LB and KADO media is a good qualitative method for the detection of biofilms of this pathogen.

Keywords

Vitis vinifera Bacterial canker disease CLSM SEM 

Notes

Acknowledgements

The authors thank FACEPE (IBPG-0138-5.01/11), CNPq (Proc. 307348/2011-3, APQ 477521/2011-8), and Professor Carlos Termignoni for providing the Biotechnology Laboratory (UFRGS) facilities in support of this research.

References

  1. Absalon C, Van Dellen K, Watnick PI (2011) A communal bacterial adhesin anchors biofilm and bystander cells to surfaces. PLoS Pathogens 7:e1002210CrossRefPubMedPubMedCentralGoogle Scholar
  2. Araujo JSP (2001) Perfil epidemiológico e subsídios para o controle de Xanthomonas campestris pv. viticola (Nayudu) Dye, agente do cancro bacteriano da videira (Vitis vinifera L.) no Brasil. PhD Thesis, Universidade Federal Rural do Rio de Janeiro. Seropédica, BrazilGoogle Scholar
  3. Donlan RM, Costerton JM (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clinical Microbiology Reviews 15:167–193CrossRefPubMedPubMedCentralGoogle Scholar
  4. Estela CRL, Alejandro PR (2012) Biofilms: a survival and resistance mechanism of microorganisms. In: Pana M (ed) Antibiotic resistant bacteria: A continuous challenge in the new millennium. In Tech Europe, Rijekam, pp 159–178Google Scholar
  5. Flemming HC, Wingender J (2010) The biofilm matrix. Nature Reviews Microbiology 8:623–633PubMedGoogle Scholar
  6. Gama MAS (2014) Caracterização polifásica de Xanthomonas campestris pv. viticola e reposicionamento de espécies de Xanthomonas patogênicas à videira e cajueiro. PhD Thesis, Universidade Federal Rural de Pernambuco. Recife, BrazilGoogle Scholar
  7. Harrison JJ, Ceri H, Yerly J, Stremick CA, Hu Y, Martinuzzi R, Turner RJ (2006) The use of microscopy and three-dimensional visualization to evaluate the structure of microbial biofilms cultivated in the Calgary biofilm device. Biological Procedures Online 8:194–215CrossRefPubMedPubMedCentralGoogle Scholar
  8. Janissen R, Murillo DM, Niza B, Sahoo PK, Nobrega MM, Cesar CL, Temperini MLA, Carvalho HF, Souza AA, Cotta MA (2015) Spatiotemporal distribution of different extracellular polymeric substances and filamentation mediate Xylella fastidiosa adhesion and biofilm formation. Scientific Reports 5.  https://doi.org/10.1038/srep09856
  9. Karatan E, Watnick P (2009) Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiology and Molecular Biology Reviews 73:310–347CrossRefPubMedPubMedCentralGoogle Scholar
  10. Knobloch JK, Horstkotte MA, Rohde H, Mack D (2002) Evaluation of different detection methods of biofilm formation in Staphylococcus aureus. Medical Microbiology and Immunology 191:101–106CrossRefPubMedGoogle Scholar
  11. Lazzarotto JJ, Fioravanço JC (2013) Tendências e sazonalidades nas exportações e importações brasileiras de uva de mesa. Informações Econômicas 43:43–58Google Scholar
  12. Lorite GS, Janissen R, Clerici JH, Rodrigues CM, Tomaz JP, Mizaikoff B, Kranz C, Souza AA, Cotta MA (2013) Surface physicochemical properties at the micro and nano length scales: role on bacterial adhesion and Xylella fastidiosa biofilm development. PLoS One 8:e75247CrossRefPubMedPubMedCentralGoogle Scholar
  13. Martínez LC, Vadyvaloo V (2014) Mechanisms of post-transcriptional gene regulation in bacterial biofilms. Frontiers in Cellular and Infection Microbiology.  https://doi.org/10.3389/fcimb.2014.00038
  14. Naue CR, Costa VSO, Barbosa MAG, Batista DC, Souza EB, Mariano RLR (2014) Xanthomonas campestris pv. viticola on grapevine cutting tools and water: survival and disinfection. Journal of Plant Pathology 96:451–458Google Scholar
  15. Oliveira NM, Martinez-Garcia E, Xavier J, Durham WM, Kolter R, Kim W, Foster KR (2015) Biofilm formation as a response to ecological competition. PLoS Biology 13:e1002191CrossRefPubMedPubMedCentralGoogle Scholar
  16. Peixoto AR, Mariano RLR, Moreira JOT, Viana IO (2007) Hospedeiros alternativos de Xanthomonas campestris pv. viticola. Fitopatologia Brasileira 32:161–164CrossRefGoogle Scholar
  17. Poto AD, Sbarra MS, Provenza G, Visai L, Speziale P (2009) The effect of photodynamic treatment combined with antibiotic action or host defense mechanisms on Staphylococcus aureus biofilms. Biomaterials 30:3158–3166CrossRefPubMedGoogle Scholar
  18. Rigano LA, Siciliano F, Enrique R, Sendín L, Filippone P, Torres PS, Qüesta J, Dow JM, Castagnaro AP, Vojnov AA, Marano MR (2007) Biofilm formation, epiphytic fitness, and canker development in Xanthomonas axonopodis pv. citri. Molecular Plant-Microbe Interactions 20:1222–1230CrossRefPubMedGoogle Scholar
  19. Sena-Vélez M, Redondo C, Gell I, Ferragud E, Johnson E, Graham JH, Cubero J (2015) Biofilm formation and motility of Xanthomonas strains with different citrus host range. Plant Pathology 64:767–775CrossRefGoogle Scholar
  20. Silva AMF, Menezes EF, Souza EB, Melo NF, Mariano RLM (2012) Sobrevivência de Xanthomonas campestris pv. viticola em tecido infectado de videira. Revista Brasileira de Fruticultura 34:757–765CrossRefGoogle Scholar
  21. Simões M, Simões LC, Vieira MJ (2010) A review of current and emergent biofilm control strategies. Food Science and Technology 43:573–583Google Scholar
  22. Stepanović S, Vuković D, Dakić I, Savić B, Švabić-Vlahović M (2000) A modified microtiter-plate test for quantification of staphylococcal biofilm formation. Journal of Microbiological Methods 40:175–179CrossRefPubMedGoogle Scholar
  23. Tang J, Kang M, Chen H, Shi X, Zhou R, Chen J, Du Y (2011) The staphylococcal nuclease prevents biofilm formation in Staphylococcus aureus and other biofilm-forming bacteria. Science China. Life Sciences 54:863–869PubMedGoogle Scholar
  24. Trentin DS, Gorziza DF, Abraham WR, Antunes ALS, Lener C, Mothes B, Termignoni C, Macedo AJ (2011) Antibiofilm activity of Cobetia marina filtrate upon Staphylococcus epidermidis catheter-related isolates. Brazilian Journal of Microbiology 42:1329–1333CrossRefPubMedPubMedCentralGoogle Scholar
  25. Trentin DS, Giordani RB, Macedo AJ (2013) Biofilmes bacterianos patogênicos: aspectos gerais, importância clínica e estratégias de combate. Revista Liberato 14:113–238Google Scholar
  26. Turskaya AL, Ul’danova AA, Stepanov AV, Bukin YS, Verkhoturov VV, Gaidac BK, Markova YA (2017) Formation of Pectobacterium carotovorum biofilms depending of the carbon source. Microbiology 86:49–55CrossRefGoogle Scholar
  27. Zimaro T, Thomas L, Marondedze C, Garavaglia BS, Gehring C, Ottado J, Gottig N (2013) Insights into Xanthomonas axonopodis pv. citri biofilm through proteomics. BMC Microbiology 13:186CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Sociedade Brasileira de Fitopatologia 2017

Authors and Affiliations

  • Myrzânia L. Guerra
    • 1
  • Carolina B. Malafaia
    • 2
  • Alexandre J. Macedo
    • 3
  • Márcia V. Silva
    • 2
  • Rosa L. R. Mariano
    • 1
  • Elineide B. Souza
    • 4
  1. 1.Departamento de AgronomiaUniversidade Federal Rural de PernambucoRecifeBrazil
  2. 2.Centro de Ciências BiológicasUniversidade Federal de PernambucoRecifeBrazil
  3. 3.Centro de BiotecnologiaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  4. 4.Departamento de BiologiaUniversidade Federal Rural de PernambucoRecifeBrazil

Personalised recommendations