Skip to main content

Advertisement

Log in

Induced resistance in tomato plants promoted by two endophytic bacilli against bacterial speck

  • Original Article
  • Published:
Tropical Plant Pathology Aims and scope Submit manuscript

Abstract

Endophytic bacteria Bacillus pumilus and Bacillus amyloliquefaciens, indigenous from tomato, were evaluated for their ability to induce resistance against bacterial speck in tomato plants. Plants grown from seeds that were bacterized with the two Bacillus species and inoculated with a green fluorescent protein-marked Pseudomonas syringae pv. tomato NS4 displayed reduced disease severity when compared to control treatment (water). However, plants in an induced state had a slight negative effect on plant growth parameters such as plant height and plant dry weight. Under epifluorescence microscopy, on tomato phylloplane of plants grown from seeds bacterized with the bacilli, the GFP-marked strain population was drastically reduced and presented individual cells or few aggregates of the pathogen between the depressions along the junctions on the leaf surface. In addition, peroxidase (POX), polyphenol oxidase (PPO) and phenylalanine ammonia-lyase (PAL) enzyme activities were evaluated in plant extracts, and all showed increased activity. We report the ability of two Bacillus species in promoting the phenomenon of induced resistance in tomato plants by a significant increase in POX, PPO and PAL activities, which produced a protective effect in reducing disease severity in levels that reached 62%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbasi PA, Khabbaz SE, Weselowski B, Zhang L (2015) Occurrence of copper-resistant strains and a shift in Xanthomonas spp. causing tomato bacterial spot in Ontario. Can J Microbiol 61:753–761

    Article  CAS  PubMed  Google Scholar 

  • Ahn IP, Park K, Kim CH (2002) Rhizobacteria-induced resistance perturbs viral disease progress and triggers defense-related gene expression. Mol Cells 13:302–308

    CAS  PubMed  Google Scholar 

  • Anterola AM, Lewis NG (2002) Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity. Phytochemistry 61:221–294

    Article  CAS  PubMed  Google Scholar 

  • Bashan Y (1997) Alternative strategies for controlling plant diseases caused by Pseudomonas syringae. In: Rudolph K, Burr TJ, Mansfield JW, Stead D, Vivian A, von Kietzell J (eds) Pseudomonas syringae pathovars and related pathogens - developments in plant pathology. Kluwer Academic Publishers, Dordrecht, pp 575–583

    Google Scholar 

  • Behlau F, Hong JC, Jones JB, Graham JH (2013) Evidence for acquisition of copper resistance genes from different sources in citrus-associated Xanthomonads. Phytopathology 103:409–418

    Article  CAS  PubMed  Google Scholar 

  • Blancard D, Laterrot H, Marchoux G, Candresse T (2012) Tomato diseases, identification, biology and control: a colour handbook, 2nd edn. Manson Publishing, Versailles

    Book  Google Scholar 

  • Bordiec S, Paquis S, Lacroix H, Dhondt S, Barka EA, Kauffmann S, Jeandet P, Mazeyrat-Gourbeyre F, Clément C, Baillieul F, Dorey S (2011) Comparative analysis of defence responses induced by the endophytic plant growth-promoting rhizobacterium Burkholderia phytofirmans strain PsJN and the non-host bacterium Pseudomonas syringae pv. pisi in grapevine cell suspensions. J Exp Bot 62:595–603

    Article  CAS  PubMed  Google Scholar 

  • Boudet AM (1998) A new view of lignification. Trends Plant Sci 3:67–71

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brown JKM (2016) Fitness costs of pathogen recognition in plants and their implications for crop improvement. In: Collinge DB (ed) Plant pathogen resistance biotechnology. John Wiley & Sons, New Jersey, pp 385–400

    Chapter  Google Scholar 

  • Brown JKM, Andrivon D, Collinge DB, Nicholson P (2013) Fitness costs and trade-offs in plant disease. Plant Pathol 62:1

    Article  Google Scholar 

  • Cabanás CGL, Schilirò E, Valverde-Corredor A, Mercado-Blanco J (2014) The biocontrol endophytic bacterium Pseudomonas fluorescens PICF7 induces systemic defense responses in aerial tissues upon colonization of olive roots. Front Microbiol 5:427

    Google Scholar 

  • Cazorla FM, Arrebola E, Sesma A, Pérez-García A, Codina JC, Murillo J, de Vicente A (2002) Copper resistance in Pseudomonas syringae strains isolated from mango is encoded mainly by plasmids. Phytopathology 92:909–916

    Article  CAS  PubMed  Google Scholar 

  • Cellini A, Fiorentini L, Buriani G, Yu J, Donati I, Cornish DA, Novak B, Costa G, Vanneste JL, Spinelli F (2014) Elicitors of the salicylic acid pathway reduce incidence of bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidae. Ann Appl Biol 165:441–453

    Article  CAS  Google Scholar 

  • Chen NL, Hu M, Dai CY, Yang SM (2010) The effects of inducing treatments on phenolic metabolism of melon leaves. Acta Hortic Sin 37:1759–1766

    CAS  Google Scholar 

  • Chen X, Miché L, Sachs S, Wang Q, Buschart A, Yang H, Cruz CMV, Hurek T, Reinhold-Hurek B (2015) Rice responds to endophytic colonization which is independent of the common symbiotic signaling pathway. New Phytol 208:531–543

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Pizzatti C, Bonaldi M, Saracchi M, Erlacher A, Kunova A, Berg G, Cortesi P (2016) Biological control of lettuce drop and host plant colonization by rhizospheric and endophytic Streptomycetes. Front Microbiol 7:714

    PubMed  PubMed Central  Google Scholar 

  • Choudhary DK, Varma A (eds) (2016) Microbial-mediated induced systemic resistance in plants. Springer Singapore, Singapore

    Google Scholar 

  • Cipollini D, Heil M (2010) Costs and benefits of induced resistance to herbivores and pathogens in plants. CAB Rev: Perspect Agric Vet Sci Nutr Nat Resour 5:1–25

    Article  Google Scholar 

  • Collinge DB (ed) (2016) Plant pathogen resistance biotechnology. John Wiley & Sons, New Jersey

    Google Scholar 

  • Constabel CP, Barbehenn R (2008) Defensive roles of polyphenol oxidase in plants. In: Schaller A (ed) Induced plant resistance to herbivory. Springer, Amsterdam, pp 253–269

    Chapter  Google Scholar 

  • Cooksey DA (1990) Genetics of bactericide resistance in plant pathogenic bacteria. Annu Rev Phytopathol 28:201–219

    Article  CAS  Google Scholar 

  • Cooksey DA, Azad HR (1992) Accumulation of copper and other metals of copper-resistant plant-pathogenic and saprophytic pseudomonads. Appl Environ Microbiol 58:274–278

    CAS  PubMed  PubMed Central  Google Scholar 

  • Denancé N, Sánchez-Vallet A, Goffner D, Molina A (2013) Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs. Front Plant Sci 4:155

    Article  PubMed  PubMed Central  Google Scholar 

  • Dietrich R, Ploss K, Heil M (2005) Growth responses and fitness costs after induction of pathogen resistance depend on environmental conditions. Plant Cell Environ 28:211–222

    Article  CAS  Google Scholar 

  • Diomandé SE, Nguyen-The C, Guinebretière MH, Broussolle V, Brillard J (2015) Role of fatty acids in Bacillus environmental adaptation. Front Microbiol 6:813

    PubMed  PubMed Central  Google Scholar 

  • Eljounaidi K, Lee SK, Bae H (2016) Bacterial endophytes as potential biocontrol agents of vascular wilt diseases - review and future prospects. Biol Control 103:62–68

    Article  Google Scholar 

  • El-Sayed ESA, El-Didamony G, El-Sayed EF (2002) Effects of mycorrhizae and chitin-hydrolysing microbes on Vicia faba. World J Microbiol Biotechnol 18:505–515

    Article  CAS  Google Scholar 

  • Gao L, Zhang Y (2013) Effect of salicylic acid on pear leaf induced resistance to pear ring rot. World Appl Sci J 22:1534–1539

    CAS  Google Scholar 

  • Gao X, Gong Y, Huo Y, Han Q, Kang Z, Huang L (2015) Endophytic Bacillus subtilis strain E1R-J is a promising biocontrol agent for wheat powdery mildew. BioMed Res Int. ID 462645:8

  • Gauillard F, Richard-Forget F, Nicolas J (1993) New spectrophotometric assay for polyphenol oxidase activity. Anal Biochem 215:59–65

    Article  CAS  PubMed  Google Scholar 

  • Gerhardt PE (1994) Methods for general and molecular bacteriology. American Society for Microbiology, Washington

    Google Scholar 

  • Goto M, Hikota T, Kyuda T, Nakajima M (1993) Induction of copper resistance plant-pathogenic bacteria exposed to glutamate, plant extracts, phosphate buffer, and some antibiotics. Dis Control Pest Manag 83:1449–1453

    CAS  Google Scholar 

  • Hallman J, Quadt-Hallman A, Mahafee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914

    Article  Google Scholar 

  • Halo BA, Khan AL, Waqas M, AlHarrasi A, Hussain J, Ali L, Adnan M, Lee IJ (2015) Endophytic bacteria (Sphingomonas sp. LK11) and gibberellin can improve Solanum lycopersicum growth and oxidative stress under salinity. J Plant Interact 10:117–125

    Article  CAS  Google Scholar 

  • Heil M (2007) Trade-offs associated with induced resistance. In: Walters D, Newton A, Lyon G (eds) Induced resistance for plant defence: a sustainable approch to crop protection. Blackwell Publishing, Oxford, pp 157–177

    Chapter  Google Scholar 

  • Heil M, Hilpert A, Kaiser W, Linsenmair KE (2000) Reduced growth and seed set following chemical induction of pathogen defence: does systemic acquired resistance (SAR) incur allocation costs? J Ecol 88:645–654

    Article  CAS  Google Scholar 

  • Hwe-Su Y, Yang JW, Choong-Min R (2013) ISR meets SAR outside: additive action of the endophyte Bacillus pumilus INR7 and the chemical inducer, benzothiadiazole, on induced resistance against bacterial spot in field-grown pepper. Front Plant Sci 4:1–11

    Google Scholar 

  • Jardine DJ, Stephens CT (1987) Influence of timing of application and chemical on control of bacterial speck of tomato. Plant Dis 71:405–408

    Article  CAS  Google Scholar 

  • Jones JB, Zitter TA, Momol MT, Miller SA (2014) Compendium of tomato diseases, 2nd edn. APS Press, St. Paul

    Google Scholar 

  • Kado CI, Heskett MG (1970) Selective media for isolation of Agrobacterium, Corynebacterium, Erwinia, Pseudomonas and Xanthomonas. Phytopathology 60:969–979

    Article  CAS  PubMed  Google Scholar 

  • Kloepper JW, Ryu CM (2006) Bacterial endophytes as elicitors of enduced systemic resistance. In: Schulz B, Boyle C, Sieber TN (eds) Microbial root endophytes. Springer, Amsterdam, pp 33–52

    Chapter  Google Scholar 

  • La Camera S, Gouzert G, Dhondt S, HoVman L, Fritig B, Legrand M, Heitz T (2004) Metabolic reprogramming in plant immunity: the contributions of phenylpropanoid and oxylipins pathways. Immunol Rev 198:267–281

    Article  PubMed  Google Scholar 

  • Lacava PT, Azevedo JL (2013) Endophytic bacteria: a biothnological potential in agrobiology system. In: Maheshwaki DK, Saraf M, Aeron A (eds) Bacteria in agrobiology: crop productivity. Springer, Amsterdam, pp 1–44

    Chapter  Google Scholar 

  • Lacava PT, Azevedo JL (2014) Biological control of insect-pest and diseases by endophytes. In: Verma VC, Gange AC (eds) Advances in endophytic research. Springer India, New Delhi, pp 231–256

    Chapter  Google Scholar 

  • Lanna-Filho R, Souza R, Magalhães M, Villela L, Zanotto E, Ribeiro-Júnior P, Resende MLV (2013a) Induced defense responses in tomato against bacterial spot by proteins synthesized by endophytic bacteria. Trop Plant Pathol 38:295–302

    Article  Google Scholar 

  • Lanna-Filho R, Souza RM, Ferreira A, Quecine MC, Alves E, Azevedo JL (2013b) Biocontrol activity of Bacillus against a GFP-marked Pseudomonas syringae pv. tomato on tomato phylloplane. Australas Plant Pathol 42:643–651

    Article  Google Scholar 

  • Larran S, Simón MR, Moreno MV, Siurana MPS, Perelló A (2016) Endophytes from wheat as biocontrol agents against tan spot disease. Biol Control 92:17–23

    Article  Google Scholar 

  • Lee H, León J, Raskin I (1995) Biosynthesis and metabolism of salicylic acid. Proc Natl Acad Sci U S A 92:4076–4079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Gu Y, Li J, Xu M, Wei Q, Wang Y (2015) Biocontrol agent Bacillus amyloliquefaciens LJ02 induces systemic resistance against cucurbits powdery mildew. Front Microbiol 6:883

    PubMed  PubMed Central  Google Scholar 

  • Lindow SE, Brandl MT (2003) Microbiology of the phyllosphere. Appl Environ Microbiol 69:1875–1883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martins G, Lauga B, Miot-Sertier C, Mercier A, Lonvaud A, Soulas ML, Soulas G, Masneuf-Pomarède I (2013) Characterization of epiphytic bacterial communities from grapes, leaves, bark and soil of grapevine plants grown, and their relations. PLoS ONE 8, e73013

  • McManus PS, Stockwell VO, Sundin GW, Jones AL (2002) Antibiotic use in plant agriculture. Annu Rev Phytopathol 40:443–465

    Article  CAS  PubMed  Google Scholar 

  • Melnick RL, Zidack NK, Bryan AB, Maximova SN, Guiltinan M, Backman PA (2008) Bacterial endophytes: Bacillus spp. from annual crops as potential biological control agents of black pod rot of cacao. Biol Control 46:46–56

    Article  Google Scholar 

  • Mohammadi M, Kazemi H (2002) Changes in peroxidase and polyphenol oxidase activities in susceptible and resistant wheat heads inoculated with Fusarium graminearum and induced resistance. Plant Sci 162:491–498

    Article  CAS  Google Scholar 

  • Mori T, Sakurai M, Sakuta M (2001) Effects of conditioned medium on activities of PAL, CHS, DAHP synthase (DS-Co and DS-Mn) and anthocyanin production in suspension cultures of Fragaria ananassa. Plant Sci 160:355–360

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiol 15:473–497

    Article  CAS  Google Scholar 

  • Nahar K, Gretzmacher R (2011) Response of shoot and root development of seven tomato cultivars in hydrophonic system under water stress. Acad J Plant Sci 4:57–63

    Google Scholar 

  • Niu DD, Liu HX, Jiang CH, Wang YP, Wang QY, Jin HL, Guo JH (2011) The plant growth-promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate- and jasmonate/ethylene-dependent signaling pathways. Mol Plant-Microbe Interact 24:533–542

  • Niu D, Wang X, Wang Y, Song X, Wang J, Guo J, Zhao H (2016) Bacillus cereus AR156 activates PAMP-triggered immunity and induces a systemic acquired resistance through a NPR1-and SA-dependent signaling pathway. Biochem Biophys Res Commun 469:120–125

    Article  CAS  PubMed  Google Scholar 

  • Oliveira MDM, Varanda CMR, Félix MRF (2016) Induced resistance during the interaction pathogen x plant and the use of resistance inducers. Phytochem Lett 15:152–158

    Article  CAS  Google Scholar 

  • Onkokesung N, Reichelt M, van Doorn A, Schuurink RC, Dicke M (2016) Differential costs of two distinct resistance mechanisms induced by different herbivore species in Arabidopsis. Plant Physiol 170:891–906

    Article  CAS  PubMed  Google Scholar 

  • Padgham JL, Sikora RA (2007) Biological control potential and modes of action of Bacillus megaterium against Meloidogyne graminicola on rice. Crop Prot 26:971–977

    Article  Google Scholar 

  • Park KS, Kloepper JW (2000) Activation of PR-1a promoter by rhizobacteria that induce systemic resistance in tobacco against Pseudomonas syringae pv. tabaci. Biol Control 18:2–9

    Article  CAS  Google Scholar 

  • Passardi F, Cosio C, Penel C, Dunand C (2005) Peroxidases have more functions than a Swiss army knife. Plant Cell Rep 24:255–265

    Article  CAS  PubMed  Google Scholar 

  • Pavlo A, Leonid O, Iryna Z, Natalia K, Maria PA (2011) Endophytic bacteria enhancing growth and disease resistance of potato (Solanum tuberosum L.). Biol Control 56:43–49

    Article  Google Scholar 

  • Piccoli P, Bottini R (2013) Abiotic stress tolerance induced by endophytic PGPR. In: Aroca R (ed) Symbiotic endophytes, soil biology, vol 37. Springer, Berlin, pp 151–163

    Chapter  Google Scholar 

  • Pieterse CMJ, Zamioudis C, Berendsen RL, Weller DM, van Wees SCM, Bakker PAHM (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375

    Article  CAS  PubMed  Google Scholar 

  • Rajendran L, Saravanakumar D, Raguchander T, Samiyappan R (2006) Endophytic bacterial induction of defence enzymes against bacterial blight of cotton. Phytopathol Mediterr 45:203–214

    CAS  Google Scholar 

  • Rajendran L, Akila R, Karthikeya G, Raguchander T, Samiyappan R (2015) Defense related enzyme induction in coconut by endophytic bacteria (EPC 5). Acta Phytopathol Entomol Hung 50:29–43

    Article  CAS  Google Scholar 

  • Ramli NR, Mohamed MS, Seman IA, Zairun MA, Mohamad N (2016) The potential of endophytic bacteria as a biological control agent for ganoderma disease in oil palm. Sains Malays 45:401–409

    Google Scholar 

  • Reiter B, Pfeifer U, Schwab H, Sessitsch A (2002) Response of endophytic bacterial communities in potato plants to infection with Erwinia carotovora subsp. atroseptica. Appl Environ Microbiol 68:2261–2268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reynolds GJ, Gordon TR, McRoberts N (2016) Quantifying the impacts of systemic acquired resistance to pitch canker on monterey pine growth rate and hyperspectral reflectance. Forests 20:1–10

    Google Scholar 

  • Romeiro RS, Lanna-Filho R, Vieira-Júnior R, Silva HSA, Baracat-Pereira MC, Carvalho MG (2005) Macromolecules released by a plant growth-promoting rhizobacterium as elicitors of systemic resistance in tomato to bacterial and fungal pathogens. J Phytopathol 153:120–123

    Article  CAS  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Munagala SR, Kloepper JW, Paré P (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sánchez-Rangel D, Rivas-San Vicente M, de la Torre-Hernández ME, Nájera-Martínez M, Plasencia J (2015) Deciphering the link between salicylic acid signaling and sphingolipid metabolism. Front Plant Sci 6:125

    Article  PubMed  PubMed Central  Google Scholar 

  • Sasaki-Sekimoto Y, Taki N, Obayashi T, Aono M, Matsumoto F, Sakurai N, Suzuki H, Hirai MY, Noji M, Saito K, Masuda T, Takamiya K, Shibata D, Ohta H (2005) Coordinated activation of metabolic pathways for antioxidants and defence compounds by jasmonates and their roles in stress tolerance in Arabidopsis. Plant J 44:653–668

    Article  CAS  PubMed  Google Scholar 

  • Sathiyabama M (2015) Role of defense enzymes in the control of plant pathogenic bacteria. In: Kannan VR, Bastas KK (eds) Sustainable approaches to controlling plant pathogenic bacteria. CRC Press, New York, pp 311–322

    Chapter  Google Scholar 

  • Schilirò E, Ferrara M, Nigro F, Mercado-Blanco J (2012) Genetic responses induced in olive roots upon colonization by the biocontrol endophytic bacterium Pseudomonas fluorescens PICF7. PLoS ONE 7, e48646

    Article  PubMed  PubMed Central  Google Scholar 

  • Senthilkumar M, Anandham R, Madhaiyan M, Venkateswaran V, Sa T (2011) Endophytic bacteria: perspectives and applications in agricultural crop production. In: Maheshwaki DK (ed) Bacteria in agrobiology: crop ecosystems. Springer, Amsterdam, pp 61–96

    Chapter  Google Scholar 

  • STATSOFT (2005) Statistica for Windows: user’s manual. Statsoft Incorporation. Available at: http://www.statsoft.com. Accessed 30 June 2015

  • Sturz AV, Nowak J (2000) Endophytic communities of rhizobacteria and the strategies required to create yield enhancing associations with crops. Appl Soil Ecol 15:183–190

    Article  Google Scholar 

  • Sundar AR, Viswanathan R, Nagarathinam S (2009) Induction of systemic acquired resistance (SAR) using synthetic signal molecules against Colletotrichum falcatum in sugarcane. Sugar Tech 11:274–281

    Article  Google Scholar 

  • Sundin GW, Castiblanco LF, Yuan X, Zeng Q, Yang CH (2016) Bacterial disease management: challenges, experience, innovation and future prospects. Mol Plant Pathol 17:1506–1518

    Article  CAS  PubMed  Google Scholar 

  • Tian D, Traw MB, Chen JQ, Kreitman M, Bergelson J (2003) Fitness costs of R-gene-mediated resistance in Arabidopsis thaliana. Nature 423:74–77

    Article  CAS  PubMed  Google Scholar 

  • Trotel-Aziz P, Couderchet M, Biagianti S, Aziz A (2008) Characterization of new bacterial biocontrol agents Acinetobacter, Bacillus, Pantoea and Pseudomonas spp. mediating grapevine resistance against Botrytis cinerea. Environ Exp Bot 64:21–32

    Article  Google Scholar 

  • Urbanek H, Kuzniak-Gebarowska E, Herka H (1991) Elicitation of defence responses in bean leaves by Botrytis cinerea polygalacturonase. Acta Physiol Plant 13:43–50

    CAS  Google Scholar 

  • van der Ent S, Van Wees SCM, Pieterse CMJ (2009) Jasmonate signaling in plant interactions with resistance-inducing beneficial microbes. Phytochemistry 70:1581–1588

    Article  PubMed  Google Scholar 

  • van Loon LC, Bakker PA, Pieterse CM (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    Article  PubMed  Google Scholar 

  • van Mölken T, Kuzina V, Munk KR, Olsen CE, Sundelin T, van Dam NM, Hauser TP (2014) Consequences of combined herbivore feeding and pathogen infection for fitness of Barbarea vulgaris plants. Oecologia 175:589–600

    Article  PubMed  Google Scholar 

  • van Overbeek LS, Saikkonen K (2016) Impact of bacterial-fungal interactions on the colonization of the endosphere. Trends Plant Sci 21:230–242

    Article  PubMed  Google Scholar 

  • Verma VC, Gange AC (eds) (2014) Advances in endophytic research. Part V. Bio-control and bioremediation. Springer India, New Delhi, pp 231–335

  • Vos IA, Pieterse CMJ, Van Wees SCM (2013) Costs and benefits of hormone regulated plant defences. Plant Pathol 62:43–55

  • Walters D, Heil M (2007) Costs and trade-offs associated with induced resistance. Physiol Mol Plant Pathol 71:3–17

    Article  CAS  Google Scholar 

  • War AR, Paulraj MG, War MY, Ignacimuthu S (2011) Role of salicylic acid in induction of plant defense system in chickpea (Cicer arietinum L.). Plant Signal Behav 6:1787–1792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yi HS, Yang JW, Ryu CM (2013) ISR meets SAR out side: additive action ofthe endophyte Bacillus pumilus INR7 and the chemical inducer, benzothiadiazole, on induced resistance against bacterial spot infield-grown pepper. Front Plant Sci 4:1–11

    Article  Google Scholar 

  • Zhao S, Guo J (2003) Systemic acquired resistance and signal transduction. Agric Sci China 2:539–548

    Google Scholar 

  • Zhao L, Xu Y, Lai XH, Shan C, Deng Z, Ji Y (2015) Screening and characterization of endophytic Bacillus and Paenibacillus strains from medicinal plant Lonicera japonica for use as potential plant growth promoters. Braz J Microbiol 46:977–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). We thank the Laboratory of Electronic Microscopy and Ultrastructural analysis of the Universidade Federal de Lavras for access to its facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Lanna-Filho.

Additional information

Section Editor: Wagner Bettiol

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lanna-Filho, R., Souza, R.M. & Alves, E. Induced resistance in tomato plants promoted by two endophytic bacilli against bacterial speck. Trop. plant pathol. 42, 96–108 (2017). https://doi.org/10.1007/s40858-017-0141-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40858-017-0141-9

Keywords

Navigation