Tropical Plant Pathology

, Volume 42, Issue 2, pp 61–69 | Cite as

Are Sclerotinia sclerotiorum populations from the tropics more variable than those from subtropical and temperate zones?

Review Article

Abstract

The genetic variability of Sclerotinia sclerotiorum populations has been investigated in many countries and, consequently, under different ecological conditions. The first studies were conducted to gather information about the genetic structure of populations sampled in temperate climate areas. Based on DNA fingerprinting analysis of restriction fragment length polymorphism (RFLP) data and mycelial compatibility groups, most studies revealed a clonal population structure. Later, using DNA sequences, populations from subtropical regions of North America were reported to be more variable than those from temperate regions. In the past few years, new analyses in temperate, sub-tropical and tropical areas were conducted using microsatellite (SSR) markers. Most studies using SSR reported both high variability and evidence of outcrossing in S. sclerotiorum populations, but evidence of clonality has also been found. Some authors argue that populations from subtropical and tropical areas are more diverse. We argue that the reports of high variability of S. sclerotiorum in tropical or subtropical regions may be due to an increase in the number of studies performed with SSR markers in these regions and in some cases due to inappropriate interpretations of the results.

Keywords

Population genetics Variability S. minor S. trifoliorum Verticillium dahliae Sclerotium rolfsii Rhizoctonia solani 

Notes

Acknowledgements

Miller da Silva Lehner and Eduardo S. G. Mizubuti were supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq.

References

  1. Abawi GS, Grogan RG (1979) Epidemiology of diseases caused by Sclerotinia species. Phytopathology 69:899–904CrossRefGoogle Scholar
  2. Abreu MJ, Souza EA (2015) Investigation of Sclerotinia sclerotiorum strains variability in Brazil. Genet Mol Res 14:6879–6896CrossRefPubMedGoogle Scholar
  3. Aldrich-wolfe L, Travers S, Nelson BD (2015) Genetic variation of Sclerotinia sclerotiorum from multiple crops in the north central United States. PLoS ONE. doi: 10.1371/journal.pone.0139188 PubMedPubMedCentralGoogle Scholar
  4. Amselem J, Cuomo CA, van Kan JAL, Viaud M, Benito EP, Couloux A et al (2011) Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genet 7:e1002230CrossRefPubMedPubMedCentralGoogle Scholar
  5. Anderson JB, Kohn LM (1995) Clonality in soilborne, plant-pathogenic fungi. Annu Rev Phytopathol 33:369–391CrossRefPubMedGoogle Scholar
  6. Atallah ZK, Larget B, Chen X, Johnson DA (2004) High genetic diversity, phenotypic uniformity, and evidence of outcrossing in Sclerotinia sclerotiorum in the columbia basin of Washington state. Phytopathology 94:737–742CrossRefPubMedGoogle Scholar
  7. Attanayake RN, Carter PA, Jiang D, Del Río-Mendoza L, Chen W (2013) Sclerotinia sclerotiorum populations infecting canola from China and the United States are genetically and phenotypically distinct. Phytopathology 103:750–761CrossRefPubMedGoogle Scholar
  8. Attanayake RN, Tennekoon V, Johnson DA, Porter LD, del Río-Mendoza L, Jiang D, Chen W (2014) Inferring outcrossing in the homothallic fungus Sclerotinia sclerotiorum using linkage disequilibrium decay. Heredity 113:353–363CrossRefPubMedPubMedCentralGoogle Scholar
  9. Baayen RP, O’Donnell K, Bonants PJM, Cilgenik E, Kroon LPNM, Roebroeck EJA, Waalwijk C (2000) Gene genealogies and AFLP analyses in the Fusarium oxysporum complex identify monophyletic and nonmonophyletic formae speciales causing wilt and root rot diseases. Phytopathology 90:891–900CrossRefPubMedGoogle Scholar
  10. Barari H, Alavi V, Badalyan SM (2010) Genetic and morphological diversities in Sclerotinia sclerotiorum isolates in northern parts of Iran. World Appl Sci J 8:326–333Google Scholar
  11. Boland GJ, Hall R (1994) Index of plant hosts of Sclerotinia sclerotiorum. Can J Plant Pathol 16:93–108CrossRefGoogle Scholar
  12. Bolton MD, Thomma BPHJ, Nelson BD (2006) Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Mol Plant Pathol 7:1–16CrossRefPubMedGoogle Scholar
  13. Carbone I, Kohn LM (2001) A microbial population-species interface: nested cladistic and coalescent inference with multilocus data. Mol Ecol 10:947–964CrossRefPubMedGoogle Scholar
  14. Carpenter MA, Frampton C, Stewart A (1999) Genetic variation in New Zealand populations of the plant pathogen Sclerotinia sclerotiorum. N Z J Crop Hortic Sci 27:13–21CrossRefGoogle Scholar
  15. Clarkson JP, Coventry E, Kitchen J, Carter HE, Whipps JM (2013) Population structure of Sclerotinia sclerotiorum in crop and wild hosts in the UK. Plant Pathol 62:309–324CrossRefGoogle Scholar
  16. Colagar AH, Saadati M, Zarea M, Talei SA (2010) Genetic variation of the Iranian Sclerotinia sclerotiorum isolates by standardizing DNA polymorphic fragments. Biotechnology 9:67–72CrossRefGoogle Scholar
  17. Cubeta MA, Cody BR, Kohli Y, Kohn LM (1997) Clonality in Sclerotinia sclerotiorum on infected cabbage in Eastern North Carolina. Phytopathology 87:1000–1004CrossRefPubMedGoogle Scholar
  18. Ekins MG, Hayden HL, Aitken EAB, Goulter KC (2011) Population structure of Sclerotinia sclerotiorum on sunflower in Australia. Australas Plant Pathol 40:99–108CrossRefGoogle Scholar
  19. Ehrlich KC, Montalbano BG, Cotty PJ (2007) Analysis of single nucleotide polymorphisms in three genes shows evidence for genetic isolation of certain Aspergillus flavus vegetative compatibility groups. FEMS Microbiol Lett 268:231–236CrossRefPubMedGoogle Scholar
  20. Errampalli D, Kohn LM (1995) Comparison of pectic zymograms produced by different clones of Sclerotinia sclerotiorum in culture. Phytopathology 85:292–298CrossRefGoogle Scholar
  21. Gomes EV, Nascimento LB, Freitas MA, Nasser LCB, Petrofeza S (2011) Microsatellite markers reveal genetic variation within Sclerotinia sclerotiorum populations in irrigated dry bean crops in Brazil. J Phytopathol 159:94–99CrossRefGoogle Scholar
  22. Hambleton S, Walker C, Kohn LM (2002) Clonal lineages of Sclerotinia sclerotiorum previously known from other crops predominate in 1999–2000 samples from Ontario and Quebec soybean. Can J Plant Pathol 24:309–315CrossRefGoogle Scholar
  23. Hemmati R, Javan-Nikkhah M, Linde CC (2009) Population genetic structure of Sclerotinia sclerotiorum on canola in Iran. Eur J Plant Pathol 125:617–628CrossRefGoogle Scholar
  24. Jiménez-Gasco MM, Malcolm GM, Berbegal M, Armengol J, Jiménez-Díaz RM (2014) Complex molecular relationship between vegetative compatibility groups in Verticillium dahliae: VCGs do not always align with clonal lineages. Phytopathology 104:650–659CrossRefGoogle Scholar
  25. Karimi E, Safaie N, Shams-Bakhsh M (2011) Assessment of genetic diversity among Sclerotinia sclerotiorum populations in canola fields by REP-PCR. Trakia J Sci 9:62–68Google Scholar
  26. Kohli Y, Brunner LJ, Yoell H, Milgroom MG, Anderson JB, Morrall RAA, Kohn LM (1995) Clonal dispersal and spatial mixing in populations of the plant pathogenic fungus, Sclerotinia sclerotiorum. Mol Ecol 4:69–77CrossRefGoogle Scholar
  27. Kohli Y, Morrall AA, Anderson JB, Kohn LM (1992) Local and Trans-Canadian clonal distribution of Sclerotinia sclerotiorum on Canola. Phytopathology 82:875–880CrossRefGoogle Scholar
  28. Kohli Y, Kohn LM (1998) Random association among alleles in clonal populations of Sclerotinia sclerotiorum. Fungal Genet Biol 23:139–149CrossRefPubMedGoogle Scholar
  29. Kohn LM (1995) The clonal dynamic in wild and agricultural plant pathogen populations. Can J Bot 73(S1):1231–1240CrossRefGoogle Scholar
  30. Kohn LM, Carbone I, Anderson JB (1990) Mycelial interactions in Sclerotinia sclerotiorum. Exp Mycol 267:255–267CrossRefGoogle Scholar
  31. Kohn LM (1988) Restriction fragment polymorphism in nuclear and mitochondrial DNA of Sclerotinia species. Phytopathology 78:1047–1051CrossRefGoogle Scholar
  32. Kohn LM, Stasovski E, Carbone I, Royer J, Anderson JB (1991) Mycelial incompatibility and molecular markers identify genetic variability in field populations of Sclerotinia sclerotiorum. Phytopathology 81:480–485CrossRefGoogle Scholar
  33. Lehner MS, Paula Júnior TJ, Hora Júnior BT, Teixeira H, Vieira RF, Carneiro JES, Mizubuti ESG (2015) Low genetic variability in Sclerotinia sclerotiorum populations from common bean fields in Minas Gerais State, Brazil, at regional, local and micro-scales. Plant Pathol 64:921–931CrossRefGoogle Scholar
  34. Li Z, Wang Y, Chen Y, Zhang J, Fernando WGD (2009) Genetic diversity and differentiation of Sclerotinia sclerotiorum populations in sunflower. Phytoparasitica 37:77–85CrossRefGoogle Scholar
  35. Litholdo Júnior CG, Gomes EV, Lobo Júnior M, Nasser LCB, Petrofeza S (2011) Genetic diversity and mycelial compatibility groups of the plant-pathogenic fungus Sclerotinia sclerotiorum in Brazil. Genet Mol Res 10:868–877CrossRefPubMedGoogle Scholar
  36. Malvárez G, Carbone I, Grunwald NJ, Subbarao KV, Schafer M, Kohn LM (2007) New populations of Sclerotinia sclerotiorum from lettuce in California and peas and lentils in Washington. Phytopathology 97:470–483CrossRefPubMedGoogle Scholar
  37. McDonald BA (2014) Using dynamic diversity to achieve durable disease resistance in agricultural ecosystems. Trop Plant Pathol 39:191–196CrossRefGoogle Scholar
  38. McDonald BA, Linde C (2002) Pathogen population genetics, evolutionary potential, and durable resistance. Annu Rev Phytopathol 40:349–379CrossRefPubMedGoogle Scholar
  39. Meinhardt LW, Wulff NA, Bellato CM, Tsai SM (2002) Telomere and microsatellite primers reveal diversity among Sclerotinia sclerotiorum isolates from Brazil. Fitopatol Bras 27:211–215Google Scholar
  40. Mert-Türk F, Ipek M, Mermer D, Nicholson P (2007) Microsatellite and morphological markers reveal genetic variation within a population of Sclerotinia sclerotiorum from oilseed rape in the Çanakkale Province of Turkey. J Phytopathol 155:182–187CrossRefGoogle Scholar
  41. Milgroom MG (1996) Recombination and the multilocus structure of fungal populations. Annu Rev Phytopathol 34:457–477CrossRefPubMedGoogle Scholar
  42. Nalim FA, Starr JL, Woodard KE, Segner S, Keller NP (1995) Mycelial compatibility groups in Texas peanut field populations of Sclerotium rolfsii. Phytopathology 85:1507–1512CrossRefGoogle Scholar
  43. Osofee H, Hameed KM, Mahasneh A (2005) Relatedness among indiginous members of Sclerotinia sclerotiorum by mycelial compatibility and RAPD analysis in the Jordan Valley. Plant Pathol J 21:106–110CrossRefGoogle Scholar
  44. Peltier AJ, Bradley CA, Chilvers MI, Malvick DK, Mueller DS, Wise KA, Esker PD (2012) Biology, yield loss and control of Sclerotinia stem rot of soybean. J Integr Pest Manag 3:1–7CrossRefGoogle Scholar
  45. Sexton AC, Howlett BJ (2004) Microsatellite markers reveal genetic differentiation among populations of Sclerotinia sclerotiorum from Australian canola fields. Curr Genet 46:357–365CrossRefPubMedGoogle Scholar
  46. Sexton AC, Whitten AR, Howlett BJ (2006) Population structure of Sclerotinia sclerotiorum in an Australian canola field at flowering and stem-infection stages of the disease cycle. Genome 49:1408–1415CrossRefPubMedGoogle Scholar
  47. Sirjusingh C, Kohn LM (2001) Characterization of microsatellites in the fungal plant pathogen, Sclerotinia sclerotiorum. Mol Ecol Notes 1:267–269CrossRefGoogle Scholar
  48. Sun J, Irzykowski W, Jedryczka M, Han F (2005) Analysis of the genetic structure of Sclerotinia sclerotiorum(Lib.) de Bary populations from different regions and host plants by random amplified polymorphic DNA markers. J Integr Plant Biol 47:385–395CrossRefGoogle Scholar
  49. Taylor J, Jacobson DJ, Fisher MC (1999) The evolution of asexual fungi: reproduction, speciation and classification. Annu Rev Phytopathol 37:197–246Google Scholar
  50. Wang Y, Hou Y, Bo H, Zhou H, Jing L, Zhao J (2014) Mycelial compatibility groups and microsatellite markers reveal genetic diversity within and among populations of sunflower Sclerotinia sclerotiorum in China. Int J Phytopathol 03:21–31Google Scholar
  51. Winton LM, Leiner RH, Krohn AL (2006) Genetic diversity of Sclerotinia species from Alaskan vegetable crops. Can J Plant Pathol 28:426–434CrossRefGoogle Scholar
  52. Zancan WLA, Steadman JR, Higgins R, Jhala R, Machado JC (2015) Genetic and aggressiveness variation among Sclerotinia sclerotiorum dry bean isolates from Brazil fields. Biosci J 31:1143–1151CrossRefGoogle Scholar

Copyright information

© Sociedade Brasileira de Fitopatologia 2017

Authors and Affiliations

  1. 1.Departmento de FitopatologiaUniversidade Federal de ViçosaViçosaBrazil

Personalised recommendations